Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |
Article title

Solid Oxide Fuel Cell Cathodes: Importance
of Chemical Composition and Morphology

Title variants
Languages of publication
The main aspects of the cathode materials
morphology for Intermediate Temperature Solid Oxide Fuel
Cells (IT SOFC) are considered in this paper. The approaches
for estimation of their basic properties, e.g. oxygen mobility
and surface reactivity, are described and the results
of different techniques (e.g. weight and conductivity
relaxation, oxygen isotope exchange) application for studies
of powders and dense ceramic materials are compared.
The Ruddlesden-Popper type phases (e.g. Pr2NiO4) provide
enhanced oxygen mobility due to cooperative mechanism
of oxygen interstitial migration. For perovskites, the oxygen
mobility is increased by doping, which generates oxygen
vacancies or decreases metal-oxygen bond strength. Nonadditive
increasing of the oxygen diffusion coefficients
found that for perovskite-fluorite nanocomposites, it can be
explained by the fast oxygen migration along perovskitefluorite
interfaces. Functionally graded nanocomposite
cathodes provide the highest power density, the lowest
area specific polarization resistance, and the best stability
to degradation caused by the surface layer carbonization/
hydroxylation, thus being the most promising for thin film
IT SOFC design.
Physical description
25 - 10 - 2015
31 - 12 - 2014
31 - 12 - 2015
  • [1] Wincewicz K., Cooper J., Taxonomies of SOFC Material andManufacturing Alternatives, Journal of Power Sources, 2005,140, 280-296.
  • [2] Steele B.C.H., Materials for IT-SOFC Stacks 35 years R&D: theInevitability of Gradualness, Solid State Ionics, 2000, 134,3-20.
  • [3] Adler S.B., Factors Governing Oxygen Reduction in Solid OxideFuel Cell Cathodes, Chemical Reviews, 2004, 104, 4791-4843.
  • [4] Mitterdorfer A., Gauckler L.J., Mechanism of La2Zr2O7 (LZ)Formation at the LSM/YSZ Single-Crystal Interface Based onHRTEM and AFM Measurements, Solid State Ionics, 1998, 111,185.
  • [5] Yang M., Bucher E., Sitte W., Effects of Chromium Poisoningon the Long-term Oxygen Exchange Kinetics of the Solid OxideFuel Cell Cathode Materials La0.6Sr0.4CoO3 and Nd2NiO4, Journalof Power Sources, 2011, 196, 7313-7317.
  • [6] Bucher E., Sitte W., Long-term Stability of the Oxygen ExchangeProperties of (La,Sr)1−z(Co,Fe)O3−δ in Dry and Wet Atmospheres,Solid State Ionics, 2011, 192, 480-482.
  • [7] Zhou W., Ran R., Shao Z., Progress in Understanding andDevelopment of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based Cathodes forIntermediate-Temperature Solid-Oxide Fuel Cells: A review,Journal of Power Sources, 2009, 192, 231-246.
  • [8] Li Y., Yang M., Hou Zh., Dong Y., Cheng M., Investigation ofBa1−xSrxCo0.8Fe0.2O3-d as Cathodes for Low-Temperature SolidOxide Fuel Cells Both in the Absence and Presence of CO2,Journal of Power Sources, 2008, 185, 76-84.
  • [9] Pérez-Coll D., Aguadero A., Escudero M.J., Núñez P., Daza L.,Optimization of the Interface Polarization of the La2NiO4-basedCathode Working with the Ce1–xSmxO2–δ Electrolyte System,Journal of Power Sources, 2008, 178, 151-162.
  • [10] Ferchaud C., Grenier J.-C., Zhang-Steenwinkel Y., van TuelM.M.A., van Berkel F. P.F., Bassat J.-M., High PerformancePraseodymium Nickelate Oxide Cathode for Low TemperatureSolid Oxide Fuel Cell, Journal of Power Sources, 2011, 196,1872-1879.
  • [11] Niu Y., Zhou W., Sunarso J., Ge L., Zhu Zh., Shao Z., HighPerformance Cobalt-Free Perovskite Cathode for IntermediateTemperature Solid Oxide Fuel Cells, Journal of MaterialsChemistry, 2010, 20, 9619-9622.
  • [12] Kenjo T., Nishiya M., LaMnO3 Air Cathodes Containing ZrO2Electrolyte for High Temperature Solid Oxide Fuel Cells, SolidState Ionics, 1992, 57, 295-302.
  • [13] Murray E.P., Barnett S.A., Improved Performance in (La,Sr)MnO3and (La,Sr)(Co,Fe)O3 Cathodes by the Addition of a Gd-dopedCeria Second Phase, In: S.C. Singhal, M. Dokiya (Eds.),Proceedings of the Sixth International Symposium on SolidOxide Fuel Cells (SOFC VI) (17-22 June 1999, Honolulu, USA),The Electrochemical Society, 1999, 199.
  • [14] Sadykov V., Mezentseva N., Usoltsev V., Sadovskaya E.,Ishchenko A., Pavlova S., Bespalko Yu., Kharlamova T., ZevakE., Salanov A., Krieger T., Bobrenok O., Uvarov N., Okhlupin Yu.,Smorygo O., Smirnova A., Singh P., Vlasov A., KorobeynikovM., Bryazgin A., Kalinin P., Arzhannikov A., SOFC CompositeCathodes Based on Perovskite and Fluorite Structures, Journalof Power Sources, 2010, 196, 7104-7109.
  • [15] Kharlamova T., Pavlova S., Sadykov V., Bespalko Y., Krieger T.,Pelipenko V., Belyaev V., Muzykantov V., Alikina G., OkhlupinY., Uvarov N., Smirnova A., Nanocomposite Cathode Materialsfor Intermediate Temperature Solid Oxide Fuel Cells, ECSTransactions, 2011, 35, 2331-2340.
  • [16] Pavlova S., Kharlamova T., Savykov V., Krieger T., MuzykantovV., Bespalko Yu., Ishchenko A., Rogov V., Belyaev V., OkhlupinY., Uvarov N., Structural Features and Transport Propertiesof La(Sr)Fe1-xNixO3–δ – Ce0.9Gd0.1O2–δ Nanocomposites, In: B.B.Saha, A. Chakraborty, K.Ng Choon (Eds.). Innovative Materialsfor Processes in Energy Systems, IMPRES, 2010, 128-135.
  • [17] Sadykov V., Alikina G., Lukashevich A., Muzykantov V., UsoltsevV., Boronin A., Koscheev S., Krieger T., Ishchenko A., SmirnovaA., Bobrenok O., Uvarov N., Design and Characterizationof LSM/ScCeSZ Nanocomposite As Mixed Ionic-ElectronicConducting Material For Functionally Graded Cathodes Of SolidOxide Fuel Cells, Solid State Ionics, 2011, 192, 540-546.
  • [18] Sadykov V.A., Pavlova S.N., Kharlamova T.S., MuzykantovV.S., Uvarov N.F., Okhlupin Yu.S., Ishchenko A.V., Bobin A.S.,Mezentseva N.V., Alikina G.M., Lukashevich A.I., KriegerT.A., Larina T.V., Bulgakov N.N., Tapilin V.M., Belyaev V.D.,Sadovskaya E.M., Boronin A.I., Sobyanin V.A., Bobrenok O.F.,Smirnova A.L., Smorygo O.L., Kilner J.A., Perovskites andTheir Nanocomposites with Fluorite-Like Oxides as Materialsfor Solid Oxide Fuel Cells Cathodes and Oxygen-Conducting Membranes: Mobility and Reactivity of the Surface/BulkOxygen as a Key Factor of Their Performance, In: M. Borowski(Ed.), Perovskites: Structure, Properties and Uses, NovaScience Publishers, Inc, 2010, 67-178.
  • [19] Huang S., Lu Q., Feng S., Li G., Wang C., PrNi0.6Co0.4O3–Ce0.8Sm0.2O1.9 Composite Cathodes for IntermediateTemperature Solid Oxide Fuel Cells, Journal of Power Sources,2012, 199, 150-154.
  • [20] Armstrong T., Virkar A., Performance of Solid Oxide Fuel Cellswith LSGM-LSM Composite Cathodes, Journal of the ElectrochemicalSociety, 2002, 149(12), A1565-A1571.
  • [21] Diethelm S., Closset A., Van herle J., McEvoy A.J., NisanciogluK., Study of Oxygen Exchange and Transport in MixedConducting Cobaltites by Electrochemical ImpedanceSpectroscopy, Solid State Ionics, 2000, 135, 613-618.
  • [22] Sunde S., Nisancioglu K., Gur T.M., Critical Analysis ofPotentiostatic Step Data for Oxygen Transport in ElectronicallyConducting Perovskites, Journal of the Electrochemical Society,1996, 143, 3497–3504.
  • [23] Lankhorst M.H.R., Bouwmeester H.J.M., Determination ofOxygen Nonstoichiometry and Diffusivity in Mixed ConductingOxides by Oxygen Coulometric Titration I: Chemical Diffusionin La0.8Sr0.2CoO3–δ, Journal of the Electrochemical Society, 1997,144, 1261-1267.
  • [24] Chater R.J., Carter S., Kilner J.A., Steele B.C.H. Developmentof a Novel SIMS Technique for Oxygen Self-Diffusion andSurface Exchange Coefficient Measurements in Oxides of HighDiffusivity, Solid State Ionics, 1992, 53-56, 859-867.
  • [25] Esquirol A., Kilner J., Brandon N., Oxygen Transport inLa0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O2-x Composite Cathode forIT-SOFCs // Solid State Ionics, 2004, 175, 63-67.
  • [26] Kusnezoff M., Ziesche S., Elschner Ch., Measurement ofChemical Diffusion Coefficient and Surface Exchange on MixedIonic Electronic Conductors Using Periodical pO2 Oscillations,Journal of Membrane Science, 2010, 360, 9-16.
  • [27] Katsuki M., Wang Sh., Dokiya M., Hashimoto T., HighTemperature Properties of La0.6Sr0.4Co0.8Fe0.2O3-δ: OxygenNonstoichiometry and Chemical Diffusion Constant, Solid StateIonics, 2003, 156, 453-461.
  • [28] Lane J.A., Benson S.J., Waller D., Kilner J.A., Oxygen Transportin La0.6Sr0.4Co0.2Fe0.8O3-δ, Solid State Ionics, 1999, 121, 201-208.
  • [29] Ishigaki T., Yamaguchi Sh., Mizusaki J., Fueki K., TracerDiffusion Coefficient of Oxide Ions in LaCoO3 single Crystal,Journal of Solid State Chemistry, 1984, 54, 100-107.
  • [30] De Souza R.A., Kilner J.A., Oxygen Transport in La-Sr- Mn-Co-OPerovskites, Solid State Ionics, 1999, 126, 153-161.
  • [31] Parfitt D., Chroneos A., Tarancon A., Kilner J.A., Oxygen IonDiffusion in Cation Ordered/Disordered GdBaCo2O5+ δ, Journal ofMaterials Chemistry, 2011, 21, 2183-2186.
  • [32] Boehm E., Bassat J.-M., Dordor P., Mauvy F., Grenier J.-C.,Stevens Ph., Oxygen Diffusion and Transport Properties inNon-Stoichiometric Ln2-xNiO4+δ oxides, Solid State Ionics, 2005,176, 2717-2725.
  • [33] Kilner J.A., Shaw C.K.M., Mass Transport in La2Ni1-xCoxO4+dOxides with the K2NiF4 Structure, Solid State Ionics, 2002,154-155, 523-527.
  • [34] Kan C.C., Wachsman E.D., Isotopic-Switching Analysis ofOxygen Reduction in Solid Oxide Fuel Cell Cathode Materials,Solid State Ionics, 2010, 181, 338-347.
  • [35] Benson S.J., Chater R.J., Kilner J.A., Oxygen Diffusion andSurface Exchange in the Mixed Conducting PerovskiteLa0.6Sr0.4Fe0.8Co0.2O3-δ, In: T.A. Ramanarayanan (Ed.), ElectrochemicalSociety Proceedings, Ionic and Mixed ConductingCeramics III, ECS, Pennington, NJ, 1998, 97-24, 596-609.
  • [36] Li Z., Haugsrud R., Effects of Surface Coatings on theDetermination of Dchem and kchem in La2NiO4+δ by ConductivityRelaxation, Solid State Ionics, 2012, 206, 67-71.
  • [37] Shaw C.K.M., Kilner J.A., Skinner S.J., Mixed Cobalt and NickelContaining Perovskite Oxide for Intermediate TemperatureElectrochemical Applications, Solid State Ionics, 2000, 135,765-769.
  • [38] Ishigaki T., Yamauchi Sh., Kishio K., Mizusaki J., Fueki K.,Diffusion of Oxide Ion Vacancies in Perovskite-Type Oxides,Journal of Solid State Chemistry, 1988, 73, 179-187.
  • [39] Islam M.S., Computer Modelling of Defects and Transport inPerovskite Oxides, Solid State Ionics, 2002, 154-155, 75-85.
  • [40] Read M.S.D., Islam M.S., Watson G.W., Hancock F.E., SurfaceStructures and Defect Properties of Pure and Doped La2NiO4,Journal of Materials Chemistry, 2001, 11, 2597-2602.
  • [41] Allan N.L., Mackrodt W.C., Oxygen Ion Migration in La2CuO4,Philosophical Magazine, 1991, 64, 1129-1132.
  • [42] Cai Z., Kubicek M., Fleig J., Yildiz B., Chemical Heterogeneitieson La0.6Sr0.4CoO3−δ Thin Films: Correlations to Cathode SurfaceActivity and Stability, Chemistry of Materials, 2012, 24,1116-112.
  • [43] Steele B.C.H., Bae J.-M., Properties of La0.6Sr0.4Co0.2Fe0.8O3−x(LSCF) Double Layer Cathodes on Gadolinium-doped CeriumOxide (CGO) Electrolytes: II. Role of Oxygen Exchange andDiffusion, Solid State Ionics, 1998, 106, 255-261.
  • [44] Steele B.C.H., Hori K.M., Uchino S., Kinetic ParametersInfluencing the Performance of IT-SOFC Composite Electrodes,Solid State Ionics, 2000, 135, 445-450.
  • [45] Burriel M., Pena-Martinez J., Chater R.J., Fearn S., BerenovA.V., Skinner S.J., Kilner J.A., Anisotropic Oxygen Ion Diffusionin Layered PrBaCo2O5+δ // Chemistry of Materials, 2012, 24(3),613-621.[Crossref]
  • [46] Burriel M., Garcia G., Santiso J., Kilner J.A., Chater R.J., SkinnerS.J., Anisotropic Oxygen Diffusion Properties in Epitaxial ThinFilms of La2NiO4+δ // Journal of Materials Chemistry, 2008, 18,416-422.
  • [47] Kim G., Wang S., Jacobson A.J., Chen C.L., Measurement ofOxygen Transport Kinetics in Epitaxial La2NiO4+δ Thin Films byElectrical Conductivity Relaxation, Solid State Ionics, 2006,177, 1461-1467.
  • [48] Sadykov V.A., Kharlamova T.S., Mezentseva N.V., Pavlova S.N.,Sadovskaya E.M., Muzykantov V.S., Bespalko Yu.N., Usol’tsevV.V., Zevak E.G., Kriger T.A., Ishchenko A.V., Uvarov N.F., UlikhinA.S., Chaikina M.V., Argirusis C., Studies of Oxygen TransportMechanism in Electrolytes Based on Doped Lanthanum Silicatewith Apatite Structure Using Techniques of Oxygen IsotopicHeteroexchange and Impedance Spectroscopy, Russian Journalof Electrochemistry, 2011, 47(4), 427-441.[Crossref]
  • [49] De Souza R.A., A Universal Empirical Expression for theIsotope Surface Exchange Coefficients (k*) of Acceptor-dopedPerovskite and Fluorite Oxides, Physical Chemistry ChemicalPhysics, 2006, 8, 890-897.
  • [50] Adler S.B., Chen X.Y., Wilson J.R., Mechanisms and Rate Lawsfor Oxygen Exchange on Mixed-Conducting Oxide Surfaces,Journal of Catalysis, 2007, 245, 91-109.
  • [51] Kharton V.V., Yaremchenko A.A., Naumovich E.N., Research onthe Electrochemistry of Oxygen Ion Conductors in the FormerSoviet Union. II. Perovskite-Related Oxides, Journal of SolidState Electrochemistry, 1999, 3, 303-326.
  • [52] Ullman H., Trofimenko N., Tietz F., Stöver D., Ahmad-KhanlouA., Correlation Between Thermal Expansion and Oxide IonTransport in Mixed Conducting Perovskite-type Oxides for SOFCCathodes, Solid State Ionics, 2000, 138, 79-90.
  • [53] Sakai N., Kishimoto H., Yamaji K., Horita T., Brito M.E.,Yokokawa H., Interface Stability of Perovskite Cathodes andRare-Earth Doped Ceria Interlayer in SOFCs, Journal of TheElectrochemical Society, 2007, 154, B1331-B1337.
  • [54] Kim G.T., Jacobson, A.J., Electrochemical Characterizationof La2-xPrxNiO4+x for Application as Cathodes in Intermediatetemperature SOFCs, Materials Research Society SymposiumProceedings, 2007, 972, 175-180.
  • [55] Sadykov V., Pavlova S., Zarubina V., Bobin A., Alikina G.,Lukashevich A., Muzykantov V., Usoltsev V., Kharlamova T.,Boronin A., Koscheev S., Krieger T., Ishchenko A., MezentsevaN., Salanov A., Smirnova A., Bobrenok O., Uvarov N., Designand Characterization of Functionally Graded Cathode Materialsfor Solid Oxide Fuel Cells, ECS Transactions, 2009, 25,2403-2412.
  • [56] Angoua B.F., Slamovich E.B., Single Solution Spray Pyrolysisof La0.6Sr0.4Co0.2Fe0.8O3-δ – Ce0.8Gd0.2O1.9 (LSCF–CGO) Thin FilmCathodes, State Ionics, 2012, 212, 10-17.
  • [57] Sadykov V., Borchert Yu., Alikina G., Lukashevich A., Bunina R.,Zabolotnaya G., Mezentseva N., Moroz E., Zaikovskii V., ZyuzinD., Uvarov N., Zyryanov V., Orlovskaya N., One-Pot Synthesis OfMixed Ionic-Electronic Conducting Nanocomposites ComprisedOf Fluorite-Like And Perovskite-Like Phases As CatalyticMaterials For SOFC, In: C. Schatz, R.P. Van Duyne (Eds.),Materials Research Society Symposium Proc. (27 November – 1December 2006, Boston), Boston, MA, 2006, 900E, O10.08.1-6.
  • [58] Zyryanov V.V., Sadykov V.A., Ivanovskaya M.I., Criado J.M.,Neophytides S., Synthesis And Sintering Of Ceramic NanocompositesWith High Mixed Conductivity, Science of Sintering,2005, 37, 45-54.
  • [59] Sadykov V., Mezentseva N., Arapova M., Krieger T.,Gerasimov E., Alikina G., Pelipenko V., Bobin A., Muzykantov V.,Fedorova Y., Sadovskaya E., Eremeev N., Belyaev V.,Okhlupin Y., Uvarov N., Fast oxygen transport in bismuth oxidecontaining nanocomposites, Solid State Ionics, 2013, 251,34-39.
  • [60] Ivanov D.V., Activity Of Perovskite-Like Oxides La1-xSrx(Mn,Fe)O3±δ(x=0-0.7) and (La1-ySry)2(Mn,Fe)O4±δ In High-TemperatureReactions Of Nitrous Oxide Decomposition And MethaneOxidation. Effect Of Oxygen Mobility. PhD Thesis, BoreskovInstitute of Catalysis, Novosibirsk, Russia, 2012.
  • [61] Kim G., Wang S., Jacobson A.J., Chen C.L., Measurement OfOxygen Transport Kinetics In Epitaxial La2NiO4+δ Thin FilmsBy Electrical Conductivity Relaxation, Solid State Ionics, 2006,177, 1461-1467.
  • [62] Chen J.Y., Rebello J., Vashook V., Trots D.M., Wang Sh.R.,Wen T.L., Zosel J., Guth U., Thermal Stability, OxygenNon-Stoichiometry And Transport Properties of LaNi0.6Fe0.4O3,Solid State Ionics, 2011, 192, 424-430.
  • [63] Seeharaj P., Berenov A., Raj E., Rudkin R., Atkinson A.,Mixed-conducting LSC/CGO Composites For Passive OxygenSeparation Membranes, Solid State Ionics, 2011, 192, 638-641.
  • [64] Yoon J.S., Yoon M.Y., Lee E.J., Moon J.-W., Hwang H.J., Influenceof Ce0.9Gd0.1O2−δ particles on microstructure and oxygenpermeability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membrane,Solid State Ionics, 2010, 181, 1387-1393.
  • [65] Charpentier P., Fragnaud P., Schleich D.M., Gehain E.,Preparation of Thin Film SOFCs working at reducedtemperature, Solid State Ionics, 2000, 135, 373-380.
  • [66] Sadykov V.A., Mezentseva N.V., Usoltsev V.V., Kharlamova T.S.,Pavlova S.N., Belyaev V.D., Alikina G.M., Bunina R.V., PelipekoV.V., Bobrova L.N., Ishchenko A.V., Bobrenok O.F., Uvarov N.F.,Okhlupin Yu.S., Bronin D.I., Beresnev S.M., Bogdanovich N.M.,Kuzin B.L., Kurteeva A.A., Smorygo O.L., Mikutski V.A.,Smirnova A.L., Korobeinikov M.V., Arzhannikov A.V., Singh P.,Rietveld B., van Berkel F., Planar Thin Film Solid Oxide FuelCells for Intermediate Temperature Operation (IT SOFC): Designand Performance // In: Zh. Liu (Ed.), Fuel Cell Performance, NY:Nova Science Publishers, 2012, 143-210.
  • [67] Chervin Ch., Glass R.S., Kauzlarich S.M., Chemical degradationof La1-xSrxMnO3/Y2O3-stabilized ZrO2 composite cathodes in thepresence of current collector pastes, Solid State Ionics, 2005,176, 17-23.
  • [68] Yoon S.P., Han J., Nam S.W., Lim T.-H., Oh I.-H., Hong S.-A.,Yoo Y.-S., Lim H.Ch., Performance of anode-supported solidoxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol–gel coating technique, Journal of Power Sources, 2002, 106,160-166.
  • [69] Lu Z., Hardy J., Templeton J., Stevenson J., Extended ReactionZone of La0.6Sr0.4Co0.2Fe0.8O3 Cathode For Solid Oxide Fuel Cell, J.Power Sources, 2012, 198, 90-94.
  • [70] Yang M., Zhang M., Yan A., Yue X., Hou Zh., Dong Y., ChengM., Interaction of La0.8Sr0.2MnO3 Interlayer With Gd0.1Ce0.9O1.95Electrolyte Membrane and Ba0.5Sr0.5Co0.8Fe0.2O3−δ Cathode InLow-Temperature Solid Oxide Fuel Cells, J. Power Sources,2008, 185, 784-789.
  • [71] Zhang H., Liu H., Cong Y., Yang W., Investigation ofSm0.5Sr0.5CoO3−δ/Co3O4 composite cathode for intermediatetemperaturesolid oxide fuel cells, Journal of Power Sources,2008, 185, 129-135.
  • [72] Hjalmarsson P., Mogensen M., La0.99Co0.4Ni0.6O3−δ –Ce0.8Gd0.2O1.95 as Composite Cathode For Solid Oxide Fuel Cells,J. Power Sources, 2011, 196, 7237-7244.
  • [73] Wachsman E.D., Development of a Lower Temperature SOFC,ECS Transactions, 2009, 25, 783-788.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.