PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |
Article title

Use of Natural Nanotubes of Halloysite Clay for
Thermochemical Conversion of Cottonseed Oil

Content
Title variants
Languages of publication
EN
Abstracts
EN
The process of obtaining low molecular weight
C2-C4 olefins, as a result of thermal and thermocatalytic
conversion of cottonseed oil was investigated. The total
content of olefin gases obtained by the thermal conversion
of cottonseed oil in the temperature range of 700-800°C is
57.2-65.2 wt. %. Thermocatalytic conversion of cottonseed
oil on the natural halloysite nanotubes as a catalyst in the
temperature range of 500-800 ° provides the total content
of olefins 10.8-69.2 wt. with increased yield of propylene
and butenes.
Publisher
Year
Volume
2
Issue
1
Physical description
Dates
received
14 - 11 - 2014
online
18 - 1 - 2015
accepted
29 - 12 - 2014
References
  • [1] Bridgwater A.V., Peacocke, G.V.C., Fast pyrolysis processes forbiomass, Sust. Energy Rev., 2000, 4 (1), 1-73.[Crossref]
  • [2] Suarez P.A., Meneghetti S.M., Meneghetti M.R., Wolf C.R.,Transformation of triglycerides into fuels, polymers andchemicals: some applications of catalysis in oleochemistry ,Quim Nova, 2007, 30, 667-676.[WoS][Crossref]
  • [3] Alencar J.W., Alves P.B., Craveiro A.A., Pyrolysis of tropicalvegetable oils, Journal of Agricultural and Food Chemistry,1983,31 (6), 1268-1276.[Crossref]
  • [4] Fortes I.C., Baugh P.J ., Pyrolysis -GC/MS studies of vegetableoils from macauba fruit, J.Anal. Appl. Pyrolysis, 1994,72,103-111.
  • [5] Fortes I.C., Baugh P.J., Study of analytical on-line pyrolysis ofoils from macauba fruit, J. Braz. Chem. Soc., 1996, 10, 469-477.
  • [6] Park K.C., Ihm S.K., Comparison of Pt/Zeolite Catalysts forn-Hexadecane Hydroisomerization, Appl. Catal., A: GeneralAppl. Catal., 2000, 203, 201-207.
  • [7] Katikaneni S.P.R., Adjaye J.D., Bakhshi N.N., Catalyticconversion of canola oil to fuels and chemicals over variouscracking catalysts, Can. J. Chem. Eng., 1995, 73. 484-497.
  • [8] Schwab A.W., Dykstra G.J., Selke E., Sorenson S.C., Pryde E.H.,Diesel fuel from thermal-decomposition of soybean oil, J. AmOil Chem Soc., 1988, 65, 1781-1786.
  • [9] Santos F.R., Ferreira J.C., Costa S.R., Catalytic decompositionof soybean oil in the presence of different zeolites, Quim Nova,1998, 21, 560-563.[Crossref]
  • [10] Idem R.O., Katikaneni S.P., Bakhshi N.N., Thermal cracking ofcanola oil: reaction products in the presence and absence ofsteam, Energy Fuels, 1996, 10, 1150-1162.[Crossref]
  • [11] Idem R.O., Katikaneni S.P., Bakhshi N.N., Catalytic conversionof canola oil to fuels and chemicals: roles of catalyst acidity,basicity and shape selectivity on product distribution, FuelProcess Tech., 1997, 51, 101-125.
  • [12] Katikaneni S.P., Bakhshi N.N., Adjaye J.D., Studies on thecatalytic conversion of canola oil to hydrocarbons: influence ofhybrid catalysts and steam, Energy Fuels, 1995, 9, 599-609.[Crossref]
  • [13] Katikaneni S.P., Adjaye J.D., Idem R.O., Bakhshi N.N.,Performance studies of various cracking catalysts in theconversion of canola oil to fuels and chemicals in a fluidizedbedreactor, J. Am Oil Chem. Soc.,1998, 75, 381-391
  • [14] Prasad Y.S., Bakhshi N.N., Mathews J.F., Eager R.L. Catalyticconversion of canola oil to fuels and chemical feedstocks, 1.Effect of process conditions on the performance of HZSM-5catalyst, Can. J. Chem. Eng., 1986, 64, 278-284.
  • [15] Twaiq F.A., Zabidi N.A., Biores B.S., Catalytic conversion ofpalm oil to hydrocarbons; performance of various zeolitecatalysts, Ind. Eng. Chem. Res., 1999, 38, 3230-3237.
  • [16] Sharma R.K., Bakhshi N.N., Catalytic upgrading of biomassderived oils to transportation fuels and chemicals, Can J. Chem.Eng., 1991, 69, 1071-1081.
  • [17] Nawar W.W., Termal degradation of lipids – review, J. Agric.Food Chem., 1989, 17, 18-24.[Crossref]
  • [18] Elordi G, Olazar M., Lopez G., Castano P., J. Bilbao J., Role ofpore structure in the deactivation of zeolites (HZSM-5, Hpand HY) by coke in the pyrolysis of polyethylene in a conicalspouted bed reactor, Appl. Catal. B., Env., 2011, 102, 224-231.[WoS]
  • [19] Donk S.V., Janssen A.H, J.H. Bitter, J.H. DeJong K.P., Generation,characterization and impact of mesopores in zeolite catalysts,Catal. Rev. Sci. Eng., 2003, 45, 297-319.
  • [20] Carati G.A., Rizzoand C.N., Millini R.P., New trends in thesynthesis of crystalline microporous materials, Catal. Sci.Technol., 2013, 3, 833-857.[WoS]
  • [21] Abdullayev E., Lvov Y., Halloysite clay nanotubes as aceramic “skeleton” for functional biopolymer compositeswith sustained drug release, J. Materials Chem. B., 2013, 1,2894-2903.[WoS]
  • [22] Bergaya F., Theng B.K.G. , Lagaly G., Handbook of Clay Science,ed. Developments in Clay Science, Elsevier Ltd., 2006
  • [23] Wilson L., Special clays from attapulgite to sepolite, IndustrialMinerals, 2004, 446, 54-61.
  • [24] Joussein E., Petit S., Churchman J., Theng B., Righi D., DelvauxB., Halloysite clay minerals – A review, Clay Minerals, 2005, 40,383–426
  • [25] Du M., Guo B., Jia D., Newly emerging applications of halloysitenanotubes: A review, Polymer International, 2010, 59, 574–582.[WoS]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_cse-2015-0001
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.