Preferences help
enabled [disable] Abstract
Number of results
2015 | 36 | 3 | 331-344
Article title

Intensification of heat transfer between heat exchange surfaces at low RE values

Title variants
Languages of publication
This contribution deals with the heat transfer parameters and pressure losses in heat exchange sets with six geometrical arrangements at low Re values (Re from 476 to 2926). Geometrical arrangements were characterised by the h/H ratio ranging from 0.2 to 1.0. The experiments used the holographic interferometry method in real time. This method enables visible and quantitative evaluations of images of temperature fields in the examined heat exchange. These images are used to determine the local and mean heat transfer parameters. The obtained data were used to determine the Colburn j-factor and the friction coefficient f. The measured values show that by using the profiled heat exchange surfaces and inserting regulating tubes, an intensification of heat transfer (increase of Num, and/or j) was achieved. However, pressure losses recorded a significant increase (increase of f).
Physical description
1 - 9 - 2015
18 - 7 - 2014
25 - 7 - 2015
5 - 11 - 2015
5 - 5 - 2015
  • Beketova A.K., Belozerov A.F., Berezkin A.N., 1979. Golograficheskaya interfrometriya fazovykh ob´ektov/ Holografická interferometria fázových objektov. Izdateľstvo Nauka (in Russian).
  • Cernecky J., Koniar J., Brodnianska Z., 2012. Možnosti optimalizácie tvaru teplovýmenných plôch výmenníkov tepla s využitím experimentálnych metód a fyzikálneho modelovania. Vedecká monografia. Zvolen: Vydavateľstvo TU vo Zvolene (in Slovak).
  • Cernecky J., Pivarciova E., 2006. Possibilities and prospects of holography. Russia: Izhevsk State Technical University.
  • Elshafei E.A.M., Awad M.M., Negiry E., Ali A.G., 2010. Heat transfer and pressure drop in corrugated channels. Energy, 35, 101-110. DOI: 10.1016/
  • Hartmann A., Lucic A., 2001. Application of the holographic interferometry in transport phenomena studies. Heat Mass Transfer, 37, 549 - 562. DOI: 10.1007/s002310100237.
  • Hauf W., Grigull V., 1970. Optical methods in heat transfer, advances in heat transfer. London, Academie Press.
  • Herman C., Kang E., 2001. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel. Heat Mass Transfer, 37, 87-99. DOI: 10.1007/s002310000101.
  • Herman C., Kang E., 2002. Heat transfer enhancement in a grooved channel with curved vanes. Int. J. Heat Mass Transfer, 45, 3741-3757. DOI: 10.1016/S0017-9310(02)00092-3.
  • Hwang S.D., Jang I.H., Cho H.H., 2006. Experimental study on flow and local heat/mass transfer characteristics inside corrugated duct. Int. J. Heat Fluid Flow, 27, 21-32. DOI: 10.1016/j.ijheatfluidflow.2005.07.001.
  • Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E., 2010. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel. Int. J. Heat Mass Transfer, 53, 178-197. DOI: 10.1016/j.ijheatmasstransfer.2009.09.042.
  • Islamoglu Y., Parmaksizoglu C., 2003. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Appl. Therm. Eng., 23, 979-987. DOI: 10.1016/S1359-4311(03)00029-2.
  • Kilicaslan I., Sarac H.I., 1998. Enhancement of heat transfer in compact heat exchanger by different type of rib with holographic interferometry. Exp. Therm. Fluid Sci., 17, 339-346. DOI: 10.1016/S0894-1777(98)00006-5.
  • Lenhard R., Jandacka J., Malcho M., 2009. Influence of distance and height ribs on boundary layer in to the passive roof cooling convector. Acta Metall. Slovaca, 15, 168-173.
  • Manickam S., Dhir V., 2012. Holographic interferometric study of heat transfer to a sliding vapor bubble. Int. J. Heat Mass Transf., 55, 925 - 940. DOI: 10.1016/j.ijheatmasstransfer.2011.10.016.
  • Martynenko O.G., Khramtsov P.P., 2005. Free-convective heat transfer. Springer Verlag, Berlin.
  • Mayinger F., Feldmann O., 2000. Optical measurements, techniques and applications, heat and mass transfer. Springer, Berlin, Germany.
  • Naylor D., 2003. Recent developments in the measurement of convective heat transfer rates by laser interferometry. Int. J. Heat Fluid Flow, 24, 345-355. DOI: 10.1016/S0142-727X(03)00021-3.
  • Pavelek, M., Janotkova, E., Stetina, J., 2007. Vizualizační a optické měřicí metody. 2nd edition. Vysoké učení technické v Brně, Brno (in Czech).
  • Piepiorka-Stepuk J., Jakubowski M., 2013. Numerical studies of fluid flow in flat, narrow-gap channels simulating plate heat exchanger. Chem. Process Eng., 34, 507-514. DOI: 10.2478/cpe-2013-0041.
  • Sajith V., Haridas D., Sobhan C.B., Reddy G.R.C., 2010. Convective heat transfer studies in macro and mini channels using digital interferometry. Int. J. Therm. Sci., 50, 239-249. DOI: 10.1016/j.ijthermalsci.2010.04.005.
  • Silaci J., Cernecky J., 2007. Manuál ku softvéru Vibra 2a pre vyhodnocovanie holografických interferogramov. Technická univerzita vo Zvolene, Zvolen, Slovenská Republika (in Slovak).
  • Tauscher R., Mayinger F., 1999. Visualization of flow temperature fields by holographic interferometry - Optimization of compact heat exchangers. 2nd Pacific Symposium on Flow Visualization and Image Processing. Honolulu, USA, 16-19 May 1999.
  • Vest Ch.M., 1979. Holographic interferometry. New York, John Wiley.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.