PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 36 | 3 | 321-330
Article title

An innovative ecological hybrid refrigeration cycle for high power refrigeration facility

Content
Title variants
Languages of publication
EN
Abstracts
EN
Searching for new refrigerants is one of the most significant scientific problems in refrigeration. There are ecological refrigerants commonly known: H2O and CO2. H2O and CO2 known as natural refrigerants, but they have problems:a high freezing point of H2O and a low triple point of CO2. These problems can be solved by the application of a hybrid sorption-compression refrigeration cycle. The cycle combines the application possibility of H2O in the high temperature sorption stage and the low temperature application of CO2 in the compression stage. This solution gives significant energy savings in comparison with the two-stage compressor cycle and with the one-stage transcritical CO2 cycle. Besides, the sorption cycle may be powered by low temperature waste heat or renewable heat. This is an original idea of the authors. In the paper an analysis of the possible extension of this solution for high capacity industrial refrigeration is presented. The estimated energy savings as well as TEWI (Total Equivalent Warming Impact) index for ecological gains are calculated.
Publisher

Year
Volume
36
Issue
3
Pages
321-330
Physical description
Dates
published
1 - 9 - 2015
revised
15 - 7 - 2015
accepted
25 - 7 - 2015
online
5 - 11 - 2015
received
5 - 8 - 2014
Contributors
author
  • Laboratory of Thermodynamics and Thermal Machines Measurements, Institute of Thermal and Process Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Krakow, Poland, pcyklis@mech.pk.edu.pl
  • Technical Institute, State Higher Vocational School in Nowy Sącz, Zamenhofa 1a, Nowy Sacz 33-300, Poland
author
  • Technical Institute, State Higher Vocational School in Nowy Sącz, Zamenhofa 1a, Nowy Sacz 33-300, Poland
References
  • Anand A., Gupta A., Tyagi S.K., 2013. Simulation studies of refrigeration cycles: A review. Renewable Sustainable Energy Rev., 17, 260-277. DOI: 10.1016/j.rser.2012.09.021.
  • Banker N., Dutta P., Prasad M., Srinivasan K., 2008. Performance studies on mechanical adsorption hybrid compression refrigeration cycles with HFC 134a. Int. J. Refrig., 31, 1398-1406. DOI:10.1016/j. ijrefrig.2008.03.009.
  • Chen C., Wang R., Xia Z., Kiplagat J., Lu Z., 2010. Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study. Appl. Energy, 87, 2673-2681. DOI: 10.1016/j.apenergy.2010.03.022.
  • Cimsit C., Ozturk I.T., 2012. Analysis of compression-absorption cascade refrigeration cycles. Appl. Therm. Eng., 40, 311-317. DOI: 10.1016/j.applthermaleng.2012.02.035.
  • Cyklis P., Brak, G., 2008. LiBr-H2O absorption cycle design for whole year use in medium climate conditions. Transactions of the Institute of Fluid-Flow Machinery, 121, 49-66.
  • Cyklis P., Kantor R., 2011a. Thermodynamic analysis of hybrid sorption-compression two stage refrigerating systems. XXIII International Congress of Refrigeration. Prague, 1181-1188.
  • Cyklis P., Kantor R., 2011b. Concept of hybrid adsorption-compression refrigeration system. I Congress of Thermodynamics, Poznan, Poland, 422-428.
  • Evola G., Le Pierre`s N., Boudehenn F., Papillon P., 2013. Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller. Int. J. Refrig., 36, 1015-1028. DOI: 10.1016/j.ijrefrig.2012.10.013.
  • Fernandez-Seara J., Sieres J., Vazquez M., 2006. Compression-absorption cascade refrigeration system. Appl. Therm. Eng , 26, 502-512. DOI: 10.1016/j.applthermaleng.2005.07.015.
  • Florides G.A., 2003. Design and construction of a LiBr - water absorption machine. Energy Convers. Manage., 44, 2483-2508. DOI: 10.1016/S0196-8904(03)00006-2.
  • Garimella S., Brown A., Nagavarapu A.K., 2011. Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling. Int. J. Refrig., 34, 1776-1785. DOI: 10.1016/j.ijrefrig.2011.05.017.
  • Grzebielec A., 2009. Experimental study on adsorption heat pump. Arch. Thermodyn., 30, 189-200.
  • Habib K., Saha B.B., Chakraborty A., Koyama Sh., Srinivasan K., 2011. Performance evaluation of combined adsorption refrigeration cycles. Int. J. Refrig., 34, 129-137. DOI: 10.1016/j.ijrefrig.2010.09.005.
  • Han W., Sun L., Zheng D., Jin H., Ma S., Jing X., 2013. New hybrid absorption-compression refrigeration system based on cascade use of mid-temperature waste heat. Appl. Energy, 106, 383-390. DOI: 10.1016/j.apenergy.2013.01.067.
  • Hassan H.Z., Mohamad A.A., Al-Ansary H.A., 2012. Development of a continuously operating solar-driven adsorption cooling system: Thermodynamic analysis and parametric study. Appl. Therm. Eng., 48, 332-341. DOI: 10.1016/j. applthermaleng.2012.04.040.
  • Joudi K., Dhaidan N., 2001. Application of solar assisted heating and desiccant cooling systems for a domestic building. Energy Convers. Manage., 42, 995-1022. DOI:10.1016/S0196- 8904(00)00111-4.
  • Kim D.S., Infante Ferreira CA., 2003. Solar absorption cooling. 1st Progress Report. Report K-332, Delft University of Technology.
  • Kim D., Infante Ferreira C., 2008. Solar refrigeration options - A state-of-the-art review. Int. J. Refrig., 31, 3-15. DOI: 10.1016/j.ijrefrig.2007.07.011.
  • Misra R., Sahoo P., Gupta A., 2005. Thermoeconomic evaluation and optimization of a double-effect H2O/LiBr vapour-absorption refrigeration system. Int. J. Refrig., 28, 331-343. DOI: 10.1016/j.ijrefrig.2004.09.006.
  • Misra R., Sahoo P., Sahoo S., Gupta A., 2003. Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int. J. Refrig., 26, 158-169. DOI: 10.1016/S0140-7007(02)00086-5.
  • NIST, (2014). NIST Standard Reference Data. Available at: www nist.gov/srd/nist23.cfm.
  • Saha B., El-Sharkawya L., Chakrabortya A., Koyama S., Banker N., Duttab P., Srinivasana K., 2006. Evaluation of minimum desorption temperatures of thermal compressors in adsorption refrigeration cycles. Int. J. Refrig ., 29, 1175-1181. DOI: 10.1016/j.ijrefrig.2006.01.005.
  • Saha B., Koyama S., Kashiwagi T., Akisawa A., Ng K., Chua H., 2003. Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system. Int. J. Refrig., 26, 749-757. DOI: 10.1016/S0140-7007(03)00074-4.
  • Saha B., Koyama S., Lee J., Kuwahara K., Alam K., Hamamoto Y., Kashiwagi T., 2003. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller. Int. J. Multiphase Flow, 29, 1249-1263. DOI: 10.1016/S0301-9322(03)00103-4.
  • Skovrup M.J., Jakobsen A., Rasmussen B. D., Andersen S., 2012. CoolPack IPU. Available at: http://en.ipu.dk/Indhold/refrigeration-and-energy-technology/coolpack.aspx.
  • SorTech., 2009. SorTech Adsorption Chiller ACS 08/ACS 15, Design manual. Version 2.2. Halle: SorTech. Pobrano 8 15, 2014.
  • Starace G., Carluccio F., Bongs C., 2014. Modeling and simulation of a gas absorption heat pump. Washington DC: Proceedings of the International Sorption Heat Pump Conference, University of Maryland.
  • Suamir I., Tassou S., 2013. Performance evaluation of integrated trigeneration and CO2 refrigeration systems. Appl. Therm. Eng., 50, 1487-1495. DOI: 10.1016/j.applthermaleng.2011.11.055.
  • Suamir I., Tassou S., Marriott D., 2012. Integration of CO2 refrigeration and trigeneration systems for energy and GHG emission savings in supermarkets. Int. J. Refrig., 35, 407-417. DOI: 10.1016/j.ijrefrig.2011.10.008.
  • Syed A., Izquierdo M., Rodriguez P., Maidment G., Missenden J., Lecuona A., Tozer R., 2005. A novel experimental investigation of a solar cooling system in Madrid. Int. J. Refrig., 28, 859-871. DOI: 10.1016/j.ijrefrig.2005.01.007.
  • Ullah K., Saidur R., Ping H., Akikur R., Shuvo N., 2013. A review of solar thermal refrigeration and cooling methods. Renewable Sustainable Energy Rev., 24, 499-513. DOI: 10.1016/j rser.2013.03.024.
  • Wang D., Xiaa Z., Wua J., Wang R., Zhai H., Dou W., 2005. Study of a novel silica gel-water adsorption chiller. Part I. Design and performance prediction. Int. J. Refrig., 28, 1073-1083. DOI: 10.1016/j.ijrefrig.2005.03.001.
  • Wang R.Z., Li M., Xu Y.X., Wu J., 2000. An energy efficient hybrid system of solar powered water heater and adsorption ice maker. Solar Energy, 68, 189-195. DOI: 10.1016/S0038-092X(99)00062-6.
  • Ward D.S., Duff W.S., Ward J.C., Löf G.O.G.,1979. Integration of evacuated tubular solar collectors with lithium bromide absorption cooling systems. Solar Energy, 22, 335-341. DOI: 10.1016/0038-092X(79)90186-5.
  • Yamaguchi H., Zhang X.-R., 2009. A novel CO2 refrigeration system achieved by CO2 solid-gastwo-phase fluid and its basic study on system performance. Int. J. Refrig., 32, 1683-1693. DOI: 10.1016/j.ijrefrig.2009.05.003.
  • Zhang G., Wang D., Zhang J., Han Y., Wanchao S., 2011. Simulation of operating characteristics of the silica gel-water adsorption chiller powered by solar energy. Solar Energy, 85, 1469-1478. DOI: 10.1016/j.solener.2011.04.005.
  • Zheng D., Meng X., 2012. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption-compression hybrid refrigeration cycle. Energy Convers. Manage., 56, 166-174. DOI: 10.1016/j. enconman.2011.10.017.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_cpe-2015-0022
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.