Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 36 | 2 | 125-133

Article title

Mathematical Kinetic Modelling and Representing Design Equation for a Packed Photoreactor with Immobilised TiO2-P25 Nanoparticles on Glass Beads in the Removal of C.I. Acid Orange 7

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, a design equation was presented for a batch-recirculated photoreactor composed of a packed bed reactor (PBR) with immobilised TiO2-P25 nanoparticle thin films on glass beads, and a continuous-flow stirred tank (CFST). The photoreactor was studied in order to remove C.I. Acid Orange 7 (AO7), a monoazo anionic dye from textile industry, by means of UV/TiO2 process. The effect of different operational parameters such as the initial concentration of contaminant, the volume of solution in CFST, the volumetric flow rate of liquid, and the power of light source in the removal efficiency were examined. A rate equation for the removal of AO7 is obtained by mathematical kinetic modelling. The results of reaction kinetic analysis indicate the conformity of removal kinetics with Langmuir-Hinshelwood model (kL-H = 0.74 mg L-1 min-1, Kads = 0.081 mg-1 L). The represented design equation obtained from mathematical kinetic modelling can properly predict the removal rate constant of the contaminant under different operational conditions (R2 = 0.963). Thus the calculated and experimental results are in good agreement with each other.

Publisher

Year

Volume

36

Issue

2

Pages

125-133

Physical description

Dates

published
1 - 6 - 2015
accepted
13 - 4 - 2015
revised
14 - 3 - 2015
online
17 - 7 - 2015
received
30 - 1 - 2014

Contributors

  • Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
  • Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran

References

  • Akpan U.G., Hameed B.H., 2009. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater., 170, 520-529. DOI: 10.1016/j.jhazmat.2009.05.039.
  • Al-Ekabi H., Serpone N., 1988. Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix. J. Phys. Chem., 92, 5726-5731. DOI: 10.1021/j100331a036.
  • Arabatzis I.M., Antonaraki S., Stergiopoulos T., Hiskia A., Papaconstantinou E., Bernard M.C., Falaras P., 2002. Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5- dichlorophenol degradation. J. Photochem. Photobiol. A, 149, 237-245. DOI: 10.1016/S1010-6030 (01) 00645-1.
  • Behnajady M.A., Modirshahla N., Mirzamohammady M., Vahid B., Behnajady B., 2008. Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J. Hazard. Mater., 160, 508-513. DOI: 10.1016/j.jhazmat.2008.03.049.
  • Behnajady M.A., Modirshahla N., Daneshvar N., Rabbani M., 2007a. Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem. Eng. J., 127, 167-176. DOI: 10.1016/j.cej.2006.09.013.
  • Behnajady M.A., Modirshahla N., Daneshvar N., Rabbani M., 2007b. Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. J. Hazard. Mater., 140, 257-263. DOI: 10.1016/j.jhazmat.2006.07.054.
  • Behnajady M.A., Modirshahla N., 2006. Nonlinear regression analysis of kinetics of the photocatalytic decolorization of an azo dye in aqueous TiO2 slurry. Photochem. Photobiolog. Sci., 5, 1078-1081. DOI: 10.1039/b610574b.
  • Behnajady M.A., Modirshahla N., 2006. Kinetic modeling on photooxidative degradation of C.I. Acid Orange 7 in a tubular continuous-flow photoreactor. Chemosphere, 62, 1543-1548. DOI: 10.1016/j.chemosphere.2005.05.027.
  • Beltran-Heredia J., Torregrosa J., Dominguez J.R., Peres J.A., 2001. Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: Comparison and modelling of reaction kinetic. J. Hazard. Mater. B, 83, 255-264. DOI: 10.1016/S0304-3894(01)00194-7.
  • Chan Y.C., Chen J.N., Lu M.C., 2001. Intermediate inhibition in the heterogeneous UV-catalysis using a TiO2 suspension system. Chemosphere, 45, 29-35. DOI: 10.1016/S0045-6535(01)00009-1.
  • Damodar R.A., Swaminathan T., 2008. Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chem. Eng. J., 144, 59-66. DOI: 10.1016/j.cej.2008.01.014.
  • Daneshvar N., Rasoulifard M.H., Khataee A.R., Hosseinzadeh F., 2007. Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J. Hazard. Mater., 143, 95-101. DOI: 10.1016/j.jhazmat.2006.08.072.
  • Daneshvar N., Salari D., Niaei A., Rasoulifard M.H., Khataee A.R., 2005. Immobilization of TiO2 nanopowder on glass beads for the photocatalytic decolorization of an azo dye C.I. Direct Red 23. J. Environ. Sci. Health A, 40, 1605-1617. DOI: 10.1081/ESE-200060664.
  • Fernandez J., Kiwi J., Baeza J., Freer J., Lizama C., Mansilla H.D., 2004. Orange II photocatalysis on immobilised TiO2: Effect of the pH and H2O2. Appl. Catal. B, 48, 205-211. DOI: 10.1016/j.apcatb.2003.10.014.
  • Grzechulska J., Morawski A.W., 2002. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal. B, 36, 45-51. DOI: 10.1016/S0926-3373 (01) 00275
  • Gupta V.K., Gupta B., Rastogi A., Agarwal S., Nayak A., 2011. A Comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye Acid Blue 113. J. Hazard. Mater., 186, 891-901. DOI: 10.1016/j.jhazmat.2010.11.091.
  • Gupta V.K., Jain R., Mittal A., Mathur M., Sikarwar S., 2007. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci., 309, 464-469. DOI: 10.1016/j.jcis.2006.12.010.
  • Gupta V.K., Jain R., Mittal A., Saleh T.A., Nayak A., Agarwal S., Sikarwar S., 2012. Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng., 32, 12-17. DOI: 10.1016/j.msec.2011.08.018.
  • Hao X.G., Li H.H., Zhang Z.L., Fan C.M., Liu S.B., Sun Y.P., 2009. Modeling and experimentation of a novel labyrinth bubble photoreactor for degradation of organic pollutant. Chem. Eng. Res. Des., 87, 1604-1611. DOI: 10.1016/j.cherd.2009.06.002.
  • Ismail M., Bousselmi L., Zahraa O., 2011. Photocatalytic behavior of WO3-loaded TiO2 systems in the oxidation of salicylic acid. J. Photochem. Photobiol. A, 222, 314-322. DOI: 10.1016/j.jphotochem.2011.07.001.
  • Khataee A.R., 2009. Photocatalytic removal of C.I. Basic Red 46 on immobilized TiO2 nanoparticles: Artificial neural network modelling. Environ. Technol., 30, 1155-1168. DOI: 10.1080/09593330903133911.
  • Khataee A.R., Fathinia M., Aber S., 2011. Kinetic study of photocatalytic decolorization of C.I. Basic Blue 3 solution on immobilized titanium dioxide nanoparticles. Chem. Eng. Res. Des., 89, 2110-2116. DOI: 10.1016/j.cherd.2011.01.001.
  • Konstantinou I.K., Albanis T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B, 49, 1-14. DOI: 10.1016/j.apcatb.2003.11.010.
  • Lin H.F., Liao S.C., Hung S.W., 2005. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photochem. Photobiol. A, 174, 82-87. DOI: 10.1016/j.jphotochem.2005.02.015.
  • Liu B.J., Torimoto T., Yoneyama H., 1998. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. A, 113, 93-97. DOI: 10.1016/S1010-6030(97)00318-3.
  • Sakthivel S., Shankar M.V., Palanichamy M., Arabindoo B., Murugesan V., 2002. Photocatalytic decomposition of leather dye: Comparative study of TiO2 supported on alumina and glass beads. J. Photochem. Photobiol. A, 148, 153-159. DOI:10.1016/S1010-6030 (02) 00085-0.
  • Sauer T., Cesconeto Neto G., Jose H.J., Moreira R.F.P.M., 2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J. Photochem. Photobiol. A, 149, 147-154. DOI:10.1016/S1010-6030(02)00015-1.
  • Turchi C.S., Ollis D.F., 1990. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal., 122, 178-192. DOI: 10.1016/0021-9517(90)90269-P.
  • Zhou S., Ray A.K., 2003. Kinetic studies for photocatalytic degradation of Eosin B on a thin film of titanium dioxide. Ind. Eng. Chem. Res., 42, 6020-6033. DOI: 10.1021/ie030366v.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_cpe-2015-0010
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.