PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |
Article title

Modes and Noise Propagation in Phase Space

Content
Title variants
Languages of publication
EN
Abstracts
EN
We show that phase space methods developed
for quantum mechanics, such as the Wigner distribution,
can be effectively used to study the evolution of nonstationary
noise in dispersive media. We formulate the issue
in terms of modes and show how modes evolve and
how they are effected by sources.We show that each mode
satisfies a Schrödinger type equation where the “Hamiltonian”
may not be Hermitian. The Hamiltonian operator
corresponds to dispersion relationwhere thewavenumber
is replaced by the wavenumber operator. A complex dispersion
relation corresponds to a non Hermitian operator
and indicates that we have attenuation. A number of examples
are given.
Keywords
Publisher

Year
Volume
2
Issue
1
Physical description
Dates
received
11 - 9 - 2014
accepted
12 - 5 - 2015
online
24 - 12 - 2015
Contributors
  • City University of New York, 695
    Park Ave. New York, NY 10065 USA
author
  • City University of New York, 695
    Park Ave. New York, NY 10065 USA
References
  • [1] J. S. Ben-Benjamin and L. Cohen, “Pulse propagation and windowedwave functions", J. of Modern Optics, 61, 36-42, 2014
  • [2] J. S. Ben-Benjamin and L. Cohen “Propagation in channels”,SPIE vol. 8744, 874413-1:874413-16, 2013 .
  • [3] J. S. Ben-Benjamin and L. Cohen,“Nonstationary noise propagationwith sources”, Proc. SPIE 9090, Automatic Target RecognitionXXIV, 909007, 2014 (doi: 10.1117/12.2053113).
  • [4] J. S. Ben-Benjamin and L. Cohen, “The Effect of Sources onModes”, to be submitted.
  • [5] L. Cohen, “Generalized phase–space distribution functions,”Jour. Math. Phys., vol. 7, pp. 781–786, 1966.
  • [6] L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.
  • [7] L. Cohen, The Weyl Operator and its Generalization, Birkhauser,2013.
  • [8] L. Cohen, “Time-Frequency Distributions - A Review,” Proc. ofthe IEEE, vol. 77, pp. 941-981, 1989.
  • [9] L. Cohen, “Phase-Space Differential Equations for Modes”, OperatorTheory: Advances and Applications, vol. 205, pp. 235-250, 2009.
  • [10] L. Cohen, “The History of Noise”, IEEE Signal Processing Magazine,Volume 22, Issue 6, 20 - 45, 2005.
  • [11] P. Faure, “Theoretical Model of Reverberation Noise”, J. Acoust.Soc. Am., Vol. 36, 259-266, 1964.
  • [12] L. Galleani and L. Cohen, “TheWigner distribution for classicalsystems,” Physics Letters A, vol. 302, pp. 149-155, 2002.
  • [13] L. Galleani and L. Cohen, “The phase space of nonstationarynoise”, Journal of Modern Optics, vol. 51, pp. 2731-2740, 2004.
  • [14] L. Galleani and L. Cohen, “Time-frequency characterization ofrandom systems," Proc. SPIE, vol. 5205, 2003.
  • [15] L. Galleani and L. Cohen, “Wigner Distribution for Random Systems”J. Mod. Optics, 49, 2657-2665 2003.
  • [16] L. Galleani and L. Cohen,“Nonstationary stochastic differentialequations”, in: Advances of nonlinear signal and image processing,S. Marshall and G. Sicuranza (Eds.), Hindowi Publishing,pp. 1-13, 2006.
  • [17] K. Graff, Wave Motion in Elastic Solids, Oxford University Press,1975.
  • [18] M. D. Greenberg, Foundations of AppliedMathematics, PrenticeHall, 1978.
  • [19] J. D. Jackson, Classical Electrodynamics, Wiley, 1992.
  • [20] H.W. Lee, “Theory and application of quantumphase-space distributionfunctions”, Physics Reports, 259, 147-211, 1995.
  • [21] P. Loughlin and L. Cohen, “Phase-space approach to wave propagationwith dispersion and damping," Proc. SPIE, vol. 5559, p.221-231, 2004. 1268-1271, 2005.
  • [22] P. Loughlin and L. Cohen, “A Wigner approximation method forwave propagation,” J. Acoust. Soc. Amer., vol. 118, no. 3, pp.1268-1271, 2005.
  • [23] P. Loughlin and L. Cohen, “Approximate wave function from approximatenon-representable Wigner distributions,” J. ModernOptics, vol. 55, no. 19/20, pp. 3379-3387, 2008
  • [24] P. Loughlin and L. Cohen, “Local properties of dispersivepulses,” J. Mod. Optics, vol. 49, no. 14/15, pp. 2645-2655, 2002.
  • [25] W. D. Mark, “Spectral Analysis of the Convolution and Filteringof Non-Stationary Stochastic Processes”, Jour. Sound Vibration,11, pp. 19-63, 1970.
  • [26] W.Martin, “Time-Frequency Analysis of Random. Signals", Proc.ICASSP 82, pp. 1325-1328,. 1982.
  • [27] W. Martin and P. Flandrin, “Wigner–Ville spectral analysis ofnonstationary processes,” IEEE Trans. Acoust. Speech, SignalProcess. 33, 1461–1470 (1985).
  • [28] D. Middleton, “A statistical theory of reverberation and similarfirst-order scattered fields”, Parts I and II, IEEE Transactions onInformation Theory, vol. IT-13, 372-392 and 393-414, 1967; “Astatistical theory of reverberation and similar first-order scatteredfields”, Parts III and IV, IEEE Transactions on InformationTheory, vol. IT-18, 35-67 and 68-90, 1972.
  • [29] P. H. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill1968.
  • [30] V. V. Ol’shveskii, Characteristics of Sea Reverberation, ConsultantsBureau, 1967.
  • [31] W.P. Schleich, Quantum Optics in Phase Space, Wiley, 2001.
  • [32] I. Tolstoy and C. Clay, Ocean Acoustics: Theory and Experimentin Underwater Sound, AIP, NY 1987.
  • [33] G. Whitham, Linear and Nonlinear Waves, J. Wiley and Sons,New York, 1974.
  • [34] E. P. Wigner, “On the quantum correction for thermodynamicequilibrium,” Physical Review, 40, 749–759, 1932.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_coph-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.