PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

The influence of the phosphorothioate diester bond on the DNA oxidation process

Content
Title variants
Languages of publication
EN
Abstracts
EN
This study describes the influence of the phosphorothioate internucleotide bond on the deoxyribonucleic acid (DNA) oxidation process. The interaction of an ultraviolet radiation (UVA) with a targeted double-stranded (ds) oligonucleotide, in which one strand contains an antraquinone (AQ) moiety on the 5’-end, may lead to a hole migration process through the double helix. In the end, the migration of theformed radical cation terminates in a suitable place. Usually, this is a guanine-rich sequence. In another experiment, phosphorothioate internucleotide bonds were detected in the bacterial genome as a natural modification. In this study, a polyacrylamide gel electrophoresis (PAGE) autoradiogram analysis of irradiated ds-DNA showed that the oxidation reaction was not inhibited by an isolated guanine. Instead, irrespective of the absence or presence of a phosphorothioate bond, the termination of the ds-DNA oxidation process was predominantly observed on the thymine moieties. Based on the obtained results, it can be concluded that in the discussed case, a hole migration by a hopping mechanism is in competition with an oxidation reaction with a superoxide radical anion. Alternatively, the radical cation migration process is sequence-dependent due to its different ionization potentials. Therefore, the presence of a phosphorothioate internucleotide bond did not change the stability of ds-DNA under UVA irradiation conditions.
EN
Publisher
Journal
Year
Volume
13
Issue
1
Physical description
Dates
received
2 - 6 - 2015
online
20 - 10 - 2015
accepted
24 - 8 - 2015
References
  • [1] Watson, J.D., Baker T.A., Bell S.P., Gann A., Levine M., Losick R., Molecular biology of the gene, 5th ed., Cold Spring Harbor Laboratory Press, San Francisco, 2004.
  • [2] Panasci, L.C., Alaoui-Jamali M.A. (Eds.), DNA repair in cancer therapy, Human Press, 2004.
  • [3] Cook, M.S., Evans M.D., Dizdaroglu M., Lunec J., Oxidative DNA damage: mechanisms, mutation and disease, FASEB J., 2003, 17, 1195-1214.
  • [4] Burrows, C., Muller J.G., Oxidative nucleobase modifications leading to strand scission, Chem. Rev., 1998, 98, 1109-1152.
  • [5] Eberhardt, M.K., Reactive oxygen metabolites: chemistry and medical consequences, Boca Raton: CRC Press, 2001.
  • [6] Misiszek, R., Crean C., Joffe A., Geacintov N.E., Shafirovich V., Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping, J. Biol. Chem., 2004, 297, 32106-32115.
  • [7] Wagneknecht, H-A. (Eds.), Charge transfer in DNA: from mechanism to application, Wiley-VCH Verlag GmbH & Co. KgaA, 2005.
  • [8] Rokhlenko Y., Geacintiv N.E., Shafirovich N., Lifetimes and reaction pathway of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions, J. Am. Chem. Soc., 2012, 134, 4955-4962.
  • [9] Rokhlenko, Y., Cadet J., Geacintov N.E., Shafirovich V., Mechanistic aspects of hydration of guanine radical cation in DNA, J. Am. Chem. Soc., 2014, 136, 5956-5962.
  • [10] Genereux, J.C., Barton J.K., Mechanisms for DNA charge transport, Chem. Rev., 2010, 110, 1642-1662.[WoS]
  • [11] Chworos, A., Coppel, Y., Dubey, I., Pratviel, G., Meunier B., Guanine oxidation: NMR characterization of a dehydro-guanidinohydantoin residue generated by a 2e-oxidation of d(GpT), J. Am. Chem. Soc., 2001, 123, 5867-5877.
  • [12] Chworos, A., Seguy, Ch., Pratviel, G., Meunier B., Characterization of the dehydro-guanidinohydantoin oxidation product of guanine in a dinucleotide, Chem. Res. Toxicol., 2002, 15, 1643-1651.
  • [13] Karwowski, B., Dupeyrat, F., Bardet, M., Ravanat, J-L., Krajewski, P., Cadet J., Nuclear magnetic resonance studies of the 4R and 4S diastereomers of spiroiminodihydantoin 2′-deoxyribonucleosides: absolute configuration and conformational features, Chem. Res. Toxicol., 2006, 19, 1357-1365.[Crossref]
  • [14] McCullough, A.K., Dodson, M.L., Lloyd R.S., Initiation of base excision repair: glycosylase mechanisms and structures, Ann. Rev. Biochem., 1999, 68, 255-285.
  • [15] Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K., Linn S., Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints, Ann. Rev. Biochem., 2004, 73, 39-85.
  • [16] Limon-Pacheco, J., Gonsebatt M.E., The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress, Mutat Res., 2009, 31, 137-147.[WoS]
  • [17] Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J.S., Zhou, X., et al., Phosphorothioation of DNA in bacteria by dnd genes, Nat. Chem. Biol., 2007, 3, 709–710.
  • [18] Kanvah, S., Schuster G.B., Oxidative damage to DNA: inhibition of guanine damage, Pure Appl. Chem., 2006, 78, 2297-2304.
  • [19] Adhikary, A., Kumar, A., Palmer, B.J., Todd, A.D., Sevilla M.D., Formation of S–Cl phosphorothioate adduct radicals in dsDNA S-oligomers: hole transfer to guanine vs disulfide anion radical formation, J. Am. Chem. Soc., 2013, 135, 12827-12838.[WoS]
  • [20] Gasper, M.S., Shuster G.B., Intramolecular photoinduced electron transfer to anthraquinones linked to duplex DNA: the effect of gaps and traps on long-range radical cation migration, J. Am. Chem. Soc., 1997, 119, 12762-12771.
  • [21] Karwowski, B., The influence of the terminal phosphorothioate diester bond on the DNA oxidation process. An experimental and theoretical approach, Molecules, 2015, 20, 12400-12411.[Crossref][WoS]
  • [22] Breslin, D.T., Schuster G.B., Anthraquinone photonucleases: mechanisms for GG-selective and nonselective cleavage of double-stranded DNA, J. Am. Chem., Soc., 1996, 118, 2311-2319.
  • [23] Quantity One 1-D analysis software, version 4.6.6., Bio-Rad Laboratories, CA, USA, 2000.
  • [24] Brinboim H.C., Kanabus-Kaminska M., The production of DNA strand brakes in human leukocytes by superoxide anion my involve a metabolic process, Proc. Natl. Acad. Sci. USA, 1985, 82, 6820-6824.
  • [25] Barnett, N.R., Cleceland, Ch.L., Landman, U., Boone, E., Kanvah, S., Schuster G.B., Effect of base sequence and hydration on the electronic and hole transport properties of duplex DNA: theory and experiment, J. Phys. Chem. A., 2003, 107, 3525-3537.
  • [26] Sinha, N.D., Jung, K.E., Analysis and purification of synthetic nucleic acids using HPLC, Curr. Protoc. Nucleic Acid Chem., 2015, 61:10.5.1-10.5.39.
  • [27] Kanvah, S., Schuster G.B., One-electron oxidation of DNA: thymine versus guanine reactivity, Org. Biomol. Chem., 2010, 8, 1340-1343.[Crossref][WoS]
  • [28] Meggers, E., Michel-Beyerle, M.E., Giese B., Sequence dependent long range hole transport in DNA, J. Am. Chem. Soc., 1998, 120, 12950-12955.
  • [29] Lewis, F.D., Zuo, X., Hayes R.T., Wasilewski M.R., Dynamics and inter- and intra-strand hole transport in DNA hairpins, J. Am. Chem. Soc., 2002, 124, 4568-4569.
  • [30] Joseph, J., Schuster G.B., Emergent functionality of nucleobase radical cations in duplex DNA: prediction of reactivity using qualitative potential energy landscapes, J. Am. Chem. Soc., 2006, 128, 6070-6074.
  • [31] Ghosh. A., Joy, A., Schuster, G.B., Douki, T., Cadet J., Selectiveone-electronoxidation of duplex DNA oligomers: reaction at thymines, Org. Biomol. Chem., 2008, 6, 916-928.[Crossref]
  • [32] Liu, Ch-S., Hernandez, R., Schuster G.B., Mechanism for radical cation transport in duplex DNA oligonucleotides, J. Am. Chem. Soc., 2004, 126, 2877-2884.
  • [33] Senthilkumar K., Grozema F.C., Guerra C.F., Bickelhaupt F.M., Siebbeles L.D.A., Mapping the sites for selective oxidation of guanines in DNA, J. Am. Chem. Soc., 2003, 125, 13658-13659.
  • [34] Giese, B., Amaudrut, J., Kohler, A., Spormann, M., Wessely S., Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling, Nature, 2001, 412, 318-320.
  • [35] Schuster G.B., Landman U., The mechanism of long-distance radical cation transport in duplex DNA: ion-gated hopping of polaron-like distortions, Top Curr. Chem., 2004, 236, 139-161.
  • [36] Hong S., Greenberg M.M., Efficient DNA interstrand cross-link formation from a nucleotide radical, J. Am. Chem. Soc., 2005, 127, 3692-3693.
  • [37] Karwowski, B. The influence of phosphorothioate on charge migration in double and single stranded DNA. The theoretical approach, Phys. Chem. Chem. Phys., 2015, 17, 21507-21516.[WoS]
  • [38] Xie, X., Liang, J., Pu, T., Xu, F., Yao, F., Yang, Y., et al., Phosphorothioate DNA as an antioxidant in bacteria, Nuc. Acid. Res., 2012, 40, 9115-9124.
  • [39] Wu, L., White, D.E., Ye, C., Vogt, F.G., Terfloth, G.J., Matsuhashi H., Desulfurization of phosphorothioate oligonucleotides via the sulfur-by-oxygen replacement induced by the hydroxyl radical during negative electrospray ionization mass spectrometry, J. Mass. Spectrom., 2012, 47, 836-844. [WoS]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0136
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.