PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Biofortification of maize with micronutrients
by Spirulina

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the present work was to examine the effect of the application of Spirulina platensis post-extraction residues enriched with Zn(II), Mn(II), Cu(II) via biosorption as micronutrient fertilizer for the biofortification of maize grains with micronutrients in field tests. As a nominal dose 2.5 kg ha-1 of zinc, 1.0 kg ha-1
of manganese and 0.5 kg ha-1 of copper were applied. The preparation was applied also in higher doses (150%, 200%) to investigate agronomic biofortification of maize grains. In field trials, obtained grain yield (7.2 Mg ha-1 for Spirulina 100%) was higher than in control group (6.2 Mg ha-1) and commercial reference product (6.6 Mg ha-1). For the same dose of micronutrients, their bioavailability was higher for bio-preparations than for reference fertilizer. The highest content of micronutrients delivered to plants (2.15 mg kg-1 – Cu, 7.07 mg kg-1 – Mn, 29.0 mg kg-1 – Zn) was observed for maize grains fertilized with preparation of Spirulina 150%, which signifies that biofortified maize grain was obtained.
Corn grains biofortified with micronutrients can be used as staple food or feed preventing from micronutrient malnutrition. The application of micronutrient biocomponents based on Spirulina biomass allows to manufacture a valuable fertilizer with bioavailable micronutrients.
EN
Publisher
Journal
Year
Volume
13
Issue
1
Physical description
Dates
received
13 - 1 - 2015
accepted
16 - 6 - 2015
online
27 - 8 - 2015
References
  • ---
  • [1] Gupta U., Wum K., Liang S., Micronutrients in soils, crops, and livestock, Earth Sci. Front., 2008, 15(5), 110-125.[Crossref]
  • [2] Amarakoon D., Thavarajah D., McPhee K., Thavarajah P., Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition, J. Food Comp. Anal., 2012, 27(1), 8-13.[Crossref]
  • [3] Ortiz-Monasterio J., Palacios-Rojas N., Meng E., Pixley K., Trethowan R., Pena R., Enhancing the mineral and vitamin content of wheat and maize through plant breeding, J. Cereal Sci., 2007, 46(3), 293-307.[Crossref][WoS]
  • [4] Mabesa R., Impa S., Grewal D., Johnson-Beebout S., Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application, Field Crop Res., 2013, 149, 223-233.
  • [5] Li B., Zhou D., Cang L., Zhang H., Fan X., Qin S., Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications, Soil Till. Res., 2007, 96(1), 166-173.[WoS][Crossref]
  • [6] El-Mekser H., Mohamed Z., Ali M., Influence of Humic Acid and Some Micronutrients on Yellow Corn Yield and Quality, World Appl. Sci. J., 2014, 32(1), 1-11.
  • [7] Salem H., El-Gizawy N., Importance of micronutrients and its application methods for improving maize (Zea mays L.) yield grown in clayey soil, American-Eurasian J. Agric. Environ. Sci., 2012, 12(7), 954-959.
  • [8] C. Hotz, Biofortification, In Benjamin Caballero (Eds), Encyclopedia of Human Nutrition,3rd edn. Academic Press, Waltham, 2013.
  • [9] Cakmak I., Enrichment of cereal grains with zinc: agronomic or genetic biofortification?, Plant. Soil., 2008, 302(1-2), 1-17.[WoS]
  • [10] Hussain S., Maqsood M., Rengel Z., Aziz T., Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application, Plant. Soil., 2012, 361(1-2), 279-290.[WoS]
  • [11] Michalak I., Tuhy Ł., Saeid A., Chojnacka K., Bioavailability of Zn (II) to Plants from new Fertilizer Components Produced by Biosorption, Int. J. Agron. Plant Prod., 2013, 4, 3522-3536.
  • [12] Jie M., Raza W., Xu Y., Shen Q., Preparation and optimization of amino acid chelated micronutrient fertilizer by hydrolyzation of chicken waste feathers and the effects on growth of rice, J. Plant Nutr., 2008, 31(3), 571-582.[WoS][Crossref]
  • [13] Rezaei H., Biosorption of chromium by using Spirulina sp. Arabian J. Chem., (in press) DOI: 10.1016/j.arabjc.2013.11.008.[Crossref]
  • [14] Solisio C., Lodi A., Torre P., Converti A., Del Borghi M., Copper removal by dry and re-hydrated biomass of Spirulina platensis, Biores. Technol., 2006, 97(14), 1756-1760.[Crossref]
  • [15] Chojnacka K, Biosorption and bioaccumulation-the prospects for practical applications, Environ. Inter., 2010, 36(3), 299-307.[Crossref]
  • [16] Teimouri M., Amirkolaie A., Yeganeh S., The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss), Aquaculture., 2013, 396, 14-19.[WoS]
  • [17] Zotte A., Cullere M., Sartori A., Szendrho Z., Kovacs M., Giaccone V., Dal Bosco A., Dietary Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) supplementation to growing rabbits: Effects on raw and cooked meat quality, nutrient true retention and oxidative stability, Meat. Sci., 2014, 98(2), 94-103.[WoS][Crossref]
  • [18] Dotto G., Lima E., Pinto L., Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis, Biores. Technol., 2012, 103(1), 123-130.[Crossref]
  • [19] Al-Homaidan A., Al-Houri H., Al-Hazzani A., Elgaaly G., Moubayed N., Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass, Arabian J. Chem., 2014, 7(1), 57-62.[WoS]
  • [20] Seno Ferreira L., Santos Rodrigues M., Monteiro de Carvalho J.C., Lodi A., Finocchio E., Perego P., Converti A., Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris in single metal systems, Chem. Eng. J., 2011, 173(2), 326-333.[WoS]
  • [21] Chojnacka K., The application of multielemental analysis in the elaboration of technology of mineral feed additives based on Lemna minor biomass, Talanta, 2006, 70(5), 966-972.[Crossref]
  • [22] Bameri M., Abdolshahi R., Mohammadi-Nejad G., Yousefi K., Tabatabaie S., Effect of different microelement treatment on wheat (Triticum aestivum) growth and yield, Int. J. Basic. Appl. Sci., 2012, 3(1), 219-223.
  • [23] Rahman I., Afzal A., Iqbal Z., Manan S., Foliar Application of Plant Mineral Nutrients on Wheat: A Review, Res. Rev. J. Agric. Appl. Sci., 2014, 3(2), 19-22.
  • [24] Pagani A., Echeverria H., Andrade F., Sainz Rozas H., Effects of nitrogen and sulfur application on grain yield, nutrient accumulation, and harvest indexes in maize, J. Plant Nutr., 2012, 35(7), 1080-1097.[WoS][Crossref]
  • [25] Velu G., Ortiz-Monasterio I., Cakmak I., Hao Z., Singh R., Biofortification strategies to increase grain zinc and iron concentrations in wheat, J. Cereal Sci., 2014, 59(3), 365-372.[Crossref][WoS]
  • [26] Tuhy Ł., Samoraj M., Chojnacka K., Evaluation of nutrients bioavailability from fertilizers in in vivo tests, Int. J. Eng. Sci., 2013, 1, 10-13.
  • [27] Zhang Z., Pang L., Yan P., Liu D., Zhang W., Yost R., Zhang F., Zou C., Zinc fertilizer placement affects zinc content in maize plant, Plant. Soil., 2013, 372(1-2), 81-92.[WoS]
  • [28] Manzeke G., Mtambanengwe F., Nezomba H., Mapfumo P., Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe, Field Crop. Res., 2014, 166, 128-136.
  • [29] Lungu O.I., Simunji S., Cakmak I., Effects of Soil and Foliar Applications of Zinc on Grain Zinc Concentrations of Maize, Sorghum and Wheat in Zambia. INTSORMIL Scientific Publications, 2011, Paper 43.
  • [30] Ortas I., Lal R., Long-term fertilization effect on agronomic yield and soil organic carbon under semi-arid Mediterranean region, Am. J. Exp. Agric., 2014, 4(9), 1086-1102. [Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0126
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.