Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry

Title variants
Languages of publication
This study was undertaken to determine mineral content, amino acid and fatty acid composition of the freshwater macroalga – Cladophora glomerata. The studies were based on the content comparison in algal biomass collected from a lake and cultured in a laboratory. To determine the ability of copper cumulating by macroalgae, Cladophora was cultured in the medium supplemented with Cu ions. This study indicated that the relative abundance of metals in filaments decreased in the following order: Ca > K > Mg > Na > Fe > Cu > Zn > Pb > As > Ni > Cd > Mn > Cr > Co. Total protein content ranged from 14.45% in Cladophora from a lake to 26.55% in Cladophora from a laboratory. The main amino acids analyzed were aspartic and glutamic acid. The fatty acid content in the dry matter of the extract varied depending on the extraction method used: ethylene alcohol (19.0%), acetone (34.5%) or supercritical fluid extraction (62.5%). Freshwater C. glomerata due to the macrominerals, trace elements, amino and fatty acids composition in the extracts can be a valuable resource for nutritional and cosmetic applications.
Physical description
12 - 2 - 2015
12 - 6 - 2015
26 - 8 - 2015
  • ---
  • [1] Higgins S.N., Malkin S.Y., Todd Howell E., Guildford S.J., Campbell L., Hiriart-Baer V., Heckey R.E., An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes, J. Phycol., 2008, 44, 839-854.[WoS][Crossref]
  • [2] Messyasz B., Rybak A., Abiotic factors affecting the development of Ulva sp. (Ulvophyceae, Chlorophyta) in freshwater ecosystems, Aquatic Ecol., 2011, 45, 75-87.
  • [3] Messyasz B., Rybak A., Pikosz M., Szendzina L., Fertility effects on Ulva thalli mass development in inland waters of Poland, Biol. Animală, 2013, 69-82.
  • [4] Schroeder G., Messyasz B., Leska B., Fabrowska J., Pikosz M., Rybak A., Biomass of freshwater algae as raw material for the industry and agriculture. Przem. Chem. 92, 1380-1384, (in Polish).
  • [5] Hossain A.B.M.S., Salleh A., Boyce A.N., Chowdhury P., Naqiuddin M., Biodiesel Fuel Production from Algae as Renewable Energy, Am. J. of Biochem. and Biotech., 2008, 4, 250-254.
  • [6] Kumar P., Suseela M.R., Toppo K., Physico-Chemical Characterization of Algal oil: a Potential Biofuel. Asian J. Exp. Biol. Sci., 2011, 2, 493-497.
  • [7] Khala G., Ghazala B., Biodiesel production from algae, Pak. J. Bot., 2012, 44, 379-381.
  • [8] Gao K., McKinley K.R., Use of macroalgae for marine biomass production and CO2 remediation- a review, J. Appl. Phycol., 1994, 6, 45-60.[Crossref]
  • [9] Sauze F., Icreasing the productivity of macroalgae by the action of a variety of factors, In: Stub A., Chartier A., Schleser P., Schleser G. (Eds.), Energy from Biomass, Elsevier Applied Science, London, 1983.
  • [10] Carballeira N.M., Sostre A., Stefanov K., Popov S., Kujumgiev A., Dimitrova-Konaklieva S., Tosteson C.G., Tosteson T.R., The fatty acid composition of a vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid, Lipids, 1997, 32, 1271-1275.[Crossref]
  • [11] Heiba H.I., Al-Easa H.S., Rizk A.F.M., Fatty acid composition of twelve algae from the coastal zones of Qatar, Plant Food Hum. Nutr., 1997, 51, 27-34.
  • [12] Horincar V.B., Parfene G., Tyagi A.K., Gottardi D., Dinică R., Guerzoni M.E., Bahrim G., Extraction and characterization of volatile compounds and fatty acids from red and green macroalgae from the Romanian Black Sea in order to obtain valuable bioadditives and biopreservatives, J. Appl. Phycol., 2014, 26, 551-559.[WoS][Crossref]
  • [13] Elenkov I., Georgieva T., Hadjieva P., Dimitrova-Konaklievat S., Popov S., Terpenoids and sterols in Cladophora vagabunda, Phytochemistry, 1995, 38, 457-459.[Crossref]
  • [14] Soltani S., Saadatmand S., Khavarinejad R., Nejadsattari T., Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz in Caspian Sea Coast, Iran, Afr. J. Biotechnol., 2011, 10, 7684-7689.
  • [15] Khuantrairong T., Traichaiyaporn S., Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: Cladophora sp.) by supplementary inorganic phosphate and investigation of its biomass production, Maejo Int. J. Sci. Technol., 2012, 6, 1-11.
  • [16] Khuantrairong T., Traichaiyaporn S., The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations, Int. J. Agric. Biol., 2011, 13, 297-300.
  • [17] Rani G., Changes in protein profile and amino acids in Cladophora vagabunda (Chlorophyceae) in response to salinity stress, J. Appl. Phycol., 2007, 19, 803-807.[WoS][Crossref]
  • [18] Khalid M.N., Shameel M., Ahmad V.U., The bioactivity and phycochemistry of two species of Cladophora (Siphonocladophyceae) from Sindh, Proceedings of the Pakistan Academy of Sciences, 2012, 49, 113-121.
  • [19] Verdel E.F., Kline P.C., Wani S., Woods A.E., Purification and partial characterization of haloperoxidase from fresh water algae Cladophora glomerata, Comp. Biochem. Physiol. B., 2000, 125, 179-187.
  • [20] Lee Y.C., Chang S.P., The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae, Bioresour. Technol., 2011, 102, 5297-5304.[WoS][Crossref]
  • [21] Rybak A., Messyasz B., Leska B., The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat, Ecotoxicology, 2013, 22, 558-573.[Crossref][WoS]
  • [22] Deng L., Zhang Y., Qin J., Wang X., Zhu X., Biosorption of Cr (VI) from aqueous solutions by nonliving green algae Cladophora albida, Miner. Eng., 2009, 22, 372-377.[Crossref][WoS]
  • [23] Deng L., Su Y., Su H., Wang X., Zhu X., Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis, J. Hazard. Mater., 2007, 143, 220-225.[WoS]
  • [24] Sternberg S.P.K., Dorn R.W., Cadmium removal using Cladophora in batch, semi-batch and flow reactors, Bioresour. Technol., 2002, 81, 249-255.[Crossref]
  • [25] Tuzen M., Sari A., Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies, Chem. Eng. J., 2010, 158, 200-206.[WoS]
  • [26] Ji L., Xie S., Feng J., Li Y., Chen L., Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta, J. Appl. Phycol., 2012, 24, 979-983.[WoS][Crossref]
  • [27] Deng L., Su Y., Su H., Wang X., Zhu X., Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: Equilibrium, kinetics and environmental effects, Adsorption, 2006, 12, 267-277.
  • [28] Deng L., Zhu X., Wang X., Su Y., Su H., Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis, Biodegradation, 2007, 18, 393-402.[WoS][Crossref]
  • [29] Aksu Z., Kutsal T., Determination of kinetic parameters in the biosorption of copper (II) on Cladophora sp., in a packed bed column reactor, Process Biochem., 1998, 33, 7-13.[Crossref]
  • [30] Ozer A., Ozer D., Ekiz H.I., The equilibrium and kinetic modelling of the biosorption of copper (II) ions on Cladophora crispate, Adsorption, 2004, 10, 317-326.
  • [31] Andersen R.A., Algal culturing techniques, Elsevier Academic Press, London, 2005.
  • [32] AOAC, Horwitz W., Latimer W., Association of Official Analytical Chemists, Official Methods of Analysis, 18th Edition, Gaithersburg Maryland, USA, 2007.
  • [33] Mendes R.L., Nobre B.P., Cardoso M.T., Pereira A.P., Palavra A.F., Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae, Inorga Chim Acta, 2003, 356, 328-334.
  • [34] Roj E., Dobrzynska-Inger A., Grzeda K., Kostrzewa D., Supercritical extraction of plant materials, Przem. Chem., 2013, 92, 1358-1363 (in Polish).
  • [35] Kostrzewa D., Dobrzynska-Inger A., Roj E., Experimental data on xanthohumol solubility in supercritical dioxide, Fluid Phase Equilibria, 2013, 360, 445-450.
  • [36] Nechev J., Ivanova A., Khotimchenko S., Boytcheva E., Dimitrova-Konaklieva S., Popov S., Stefanov K., Lipid changes in the freshwater macroalga Cladophora glomerata (L.) Kütz. (Chlorophyta) after lead treatment, C. R. Acad. Bulgare Sci., 2003, 56, 71-76.
  • [37] Tabarasa M., Rezaei M., Ramezanpour Z., Waaland J.R., Rabiei R., Fatty acids, amino acids, mineral contents, and proximate composition of some brown seaweeds, J. Phycol., 2012, 48, 285-292.[Crossref][WoS]
  • [38] Horincar V.B., Parfene G., Tyagi A.K., Gottardi D., Dinica R., Guerzoni M.E., Bahrim G., Extraction and characterization of volatile compounds and fatty acids from red and green macroalgae from the Romanian Black Sea in order to obtain valuable bioadditives and biopreservatives, J. Appl. Phycol., 2014, 26, 551-559.[WoS][Crossref]
  • [39] Elenkov I., Stefanov K., Dimitrova-Konaklievat S., Popov S., Effect of salinity on lipid composition of Cladophora vagabunda, Phytochemistry, 1996, 39-44.
  • [40] Pereira H., Barreira L., Figuieredo F., Custódio L., Vizetto-Duarte C., Polo C., Rešek E., Engelen A., Varela J., Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications, Mar. Drugs, 2012, 10, 1920-1935.[WoS][Crossref]
  • [41] Grierson S., Strezov V., Bray S., Mummacari R., Danh L.T., Foster N., Assessment of Bio-oil Extraction from Tetraselmis chui Microalgae Comparing Supercritical CO2, Solvent Extraction, and Thermal Processing, Energy Fuels, 2012, 26, 248-255.[WoS]
  • [42] Medina A.R., Grima E.M., Gimenez A.G., Ibanez M.J., Downstream processing of algal polyunsaturated fatty acids, Biotechnology Advances, 1998, 16, 517-580.[Crossref]
  • [43] Halim R., Danquah M.K., Webley P.A., Extraction of oil from microalgae for biodiesel production: A review, Biotechnology Advances, 2012, 30, 709-732.[WoS][Crossref]
  • [44] Sahena F., Zaidul I.S.M., Jinap S., Karim A.A., Abbasa K.A., Norulaini N.A.N., Omar A.K.M., Application of supercritical CO2 in lipid extraction – A review, J. Food Engin., 2009, 95, 240-253.[WoS]
  • [45] Ibañez E., Herrero M., Mendiola J.A., Castro-Puyana M., Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates, In: Hayes M., Springer U.S. (Eds.), Marine bioactive compounds: sources, characterization and applications, New York, 2012.
  • [46] Klejdus B., Lojkova L., Plaza M., Snoblova M., Sterbova D., Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry, J. Chromatogr., 2010, 1217, 7956-7965. [WoS]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.