PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Numerical analysis of thermal stresses in a new design of microtubular stack

Content
Publisher
Journal
Year
Volume
13
Issue
1
Physical description
Dates
received
6 - 11 - 2014
accepted
7 - 5 - 2015
online
7 - 7 - 2015
Contributors
  • Faculty of Chemical Technology
    and Engineering, Institute of Chemical Engineering and
    Environmental Protection Processes, West Pomeranian University
    of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
author
  • Faculty of Chemical Technology
    and Engineering, Institute of Chemical Engineering and
    Environmental Protection Processes, West Pomeranian University
    of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology
    and Engineering, Institute of Chemical Engineering and
    Environmental Protection Processes, West Pomeranian University
    of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
References
  • [1] Fardadi M., Mueller F., Jabbari F., Feedback control of solidoxide fuel cell spatial temperature variation, J. Power Sources,2010, 195, 13, 4222-4233. DOI: 10.1016/j.cherd.2012.09.004.[WoS][Crossref]
  • [2] Vijay P., Hosseini S., Tade M. O., A novel concept forimproved thermal management of the planar SOFC, Chem.Eng. Research & Design, 2013, 91, 560-572. DOI: 10.1016/j.cherd.2012.09.004.[Crossref]
  • [3] Dey T., Singdeo D., Basu R. N., Bose M., Ghosh P. C.,Improvement in solid oxide fuel cell performance throughdesign modifications: an approach based on root causeanalysis, Inter. J. Hydrogen Energy, 2014, 39, 17258-17266.DOI: 10.1016/j.ijhydene.2014.08.025.[Crossref][WoS]
  • [4] Boigues-Munoz C., Santori G., McPhail S., Polonara F.,Thermochemical model and experimental validation of atubular SOFC cell comprised in a 1 kWel stack design for CHPapplications, Int. J. Hydrogen Energy, 2014, 39, 21714-21723.DOI: 10.1016/j.ijhydene.2014.09.021.[Crossref]
  • [5] Al-Masri, Peksen M., Blum L., Stolten D., A 3D CFD modelfor predicting the temperature distribution in a full scaleAPU SOFC short stack under transient operating conditions,Applied Energy, 2014, 135, 539-547. DOI:10.1016/j.apenergy.2014.08.052.[Crossref][WoS]
  • [6] Mounir H., Belaiche M., El Marjani A., El Gharad A., Thermalstress and probability of survival investigation in a multibundleintegrated planar solid oxide fuel cells IP-SOFC(integrated planar solid oxide fuel cell), Energy, 2014, 66, 378-386. DOI: 10.1016/j.energy.2014.01.017.[Crossref]
  • [7] Wang G., Yang Y., Zhang H., Xia W., 3D model of thermos-fluidand electrochemical for planar SOFC, J. Power Sources, 2007,167, 398-405. DOI: 10.1016/j.jpowsour.2007.02.019.[Crossref]
  • [8] Yakabe H., Ogiwara T., Hishinuma M., Yasuda I., 3D modelcalculation for planar SOFC, J. Power Sources, 2001, 102, 144-154. DOI: 10.1016/S0378-7753(01)00792-3.[Crossref]
  • [9] Reckangle K. P., Williford R. E., Chick L. A., Rector D. R.,M. A., Khaleel M. A., Three-dimensional thermos-fluidelectrochemical modeling of planar SOFC stacks, J. PowerSources, 2003, 113, 109-114. PII: S0378-7753(02)00487-1.
  • [10] Ki J., Kim D., Computational model to predict thermal dynamicsof planar solid oxide fuel cell stack during start-up process,J. Power Sources, 2010, 195, 3186-3200. DOI: 10.1016/j.powsour.2009.11.129.[Crossref][WoS]
  • [11] Weil K. S., Koeppel B. J., Comparative finite element analysisof the stress-strain states in three different bonded solid oxidefuel cell seal designs, J. Power Sources, 2008, 180, 343-353.DOI: 10.1016/j.jpowsour.2008.01.093.[Crossref][WoS]
  • [12] Yakabe H., Baba Y., Sakurai T., Yoshitaka Y., Evaluation of theresidual stress for anode-supported SOFCs, J. Power Sources,2004, 135, 9-16. DOI: 10.1016/j.jpowsour.2003.11.049.[Crossref]
  • [13] Nakajo A., Stiller C., Harkegard G., Bolland O., Modelingof thermal stresses and probability of survival of tubularSOFC, J. Power Sources, 2006, 158, 287-294. DOI: 10.1016/j.jpowsour.2005.09.004.[Crossref]
  • [14] Cui D., Cheng M., Thermal stress modeling of anode supportedmicro-tubular solid oxide fuel cell, J. Power Sources, 2009, 192,400-407. DOI: 10.1016/j.jpowsour.2009.03.046.[WoS][Crossref]
  • [15] Serincan M. F., Pasaogullari U., Sammes N. M., Thermalstresses in an operating micro-tubular solid oxide fuel cell,J. Power Sources, 2010, 195, 4905-4914. DOI: 10.1016/j.jpowsour.2009.12.108.[WoS][Crossref]
  • [16] Xue X., Tang J., Sammes N., Du Y., Dynamic modeling ofsingle tubular SOFC combining heat/mass transfer andelectrochemical reaction effects, J. Power Sources, 2005, 142,211-222. DOI: 10.1016/j.jpowsour.2004.11.023.[Crossref]
  • [17] Wei S. S., Wang T. H., Wu J. S., Numerical modeling ofinterconnect flow channel design and thermal stress analysisof a planar anode supported solid oxide fuel cell stack, Energy,2014, 69, 553-561. DOI: 10.1016/j.energy.2014.03.052.[Crossref][WoS]
  • [18] Liu L., Kim G. Y., Chandra A., Modeling of thermal stresses andlifetime prediction of planar solid oxide fuel cell under thermalcycling conditions, J. Power Sources, 2010, 195, 2310-2318.DOI: 10.1016/j.jpowsour.2009.10.064.[WoS][Crossref]
  • [19] Peksen M., 3D thermomechanical behaviour of solid oxide fuelcells operating in different environments, Int. J. HydrogenEnergy, 2013, 38, 13408-13418. DOI: 10.1016/j/ijhydene.2013.07.112.[WoS][Crossref]
  • [20] Peksen M., A coupled 3D thermofluid-thermomechanicalanalysis of a planar type production scale SOFC stack, Int.J. Hydrogen Energy, 2011, 36, 11914-11928. DOI: 10.1016/j/ijhydene.2011.06.045.[WoS][Crossref]
  • [21] Pianko-Oprych P., Kasilova E., Jaworski Z., Proceedings of 11thEuropean SOFC and SOE Forum 2014, (1-4 July 2014, Lucerne,Switzerland), 2014, A1322, 1-10.
  • [22] Pianko-Oprych P., Cell, Stack and System Modelling, SolidOxide Fuel Cell, Lambert Academic Publishing, 2014, ISBN 978-3-659-62295-3.
  • [23] Li J., Lin Z., Effects of electrode composition on theelectrochemical performance and mechanical property ofmicro-tubular solid oxide fuel cell, Intern. J. Hydrogen Energy,2012, 37, 12925-12940. DOI: 10.1016/j.ijhydene.2012.05.075.[Crossref]
  • [24] Anderman Industrial Ceramics Ltd. Zirconia Yttria Stabilised,brochure, (2014).
  • [25] SUAV data, internal project report, 2014.
  • [26] Delette G., Laurencin J., Usseglio-Virett F., Villanova J., BleuetP., Lay-Grindler E., Le Bihan T., Thermo-elastic propertiesof SOFC/SOEC electrode materials determined from threedimensionalmicrostructural reconstructions, Intern. Journalof Hydrogen Energy, 2013, 38, 12379-12391. DOI: 10.1016/j.ijhydene.2013.07.027.[Crossref]
  • [27] Corning MACOR Machinable Glass Ceramic 01, 02, brochure,2014.
  • [28] Haynes International Hastelloy X Alloy, brochure, 2014.
  • [29] Inconel Special Metals Alloy X 750, brochure, 2014.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0116
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.