Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

A kinetic study on drinking water denitrification
using a membrane bioreactor

Title variants
Languages of publication
This study determines the basic parameters of
Monod kinetics for microbial growth within a membrane
bioreactor using the Zenon ZeeWeed 10 MBR system. The
influent nitrate concentration was kept at 70 ± 2 mg L-1 NO3ˉ. During the experiments a constant concentration
of activated sludge was maintained at approximately
0.76 g L-1 under anoxic conditions. Sucrose was added to
the activated sludge as a carbon source. The Monod kinetic
parameters were calculated by numerical interpolation,
by considering experimental data. The maximum specific
growth rate of the biomass was determined to be 0.31 h-1,
half-saturation constant 5.4 mg L-1, and yield coefficient
0.35 mg biomass mg-1 COD. Afterwards, a dynamic
simulation was performed within the calculated
parameters. The dynamic concentration profiles for
substrate and biomass were determined at different
dilution rates within the range of 0.8 to 5 d-1.

Physical description
10 - 2 - 2015
17 - 4 - 2015
22 - 5 - 2015
  • Faculty of Chemistry and
    Chemical Engineering, University of Maribor, Smetanova 17,
    SI–2000, Maribor, Slovenia
  • Faculty of Chemistry and
    Chemical Engineering, University of Maribor, Smetanova 17,
    SI–2000, Maribor, Slovenia
  • Faculty of Chemistry and
    Chemical Engineering, University of Maribor, Smetanova 17,
    SI–2000, Maribor, Slovenia
  • [1] An S., Stone H., Nemati M., Biological removal of nitrate by anoil reservoir culture capable of autotrophic and heterotrophicactivities: Kinetic evaluation and modeling of heterotrophicprocess, J. Hazard. Mater., 2011, 190, 686-693, DOI: 10.1016/j.jhazmat.2011.03.102.[Crossref][WoS]
  • [2] Gómez M.A., González-López J., Hontoria-Garcı́a E., Influence ofcarbon source on nitrate removal of contaminated groundwaterin a denitrifying submerged filter, J. Hazard. Mater., 2000, 80,69-80, DOI: 10.1016/s0304-3894(00)00282-x.[Crossref]
  • [3] Karanasios K.A., Vasiliadou I.A., Pavlou S., Vayenas D.V.,Hydrogenotrophic denitrification of potable water: Areview, J. Hazard. Mater., 2010, 180, 20-37, DOI: 10.1016/j.jhazmat.2010.04.090.[Crossref][WoS]
  • [4] Fernández-Nava Y., Marañón E., Soons J., Castrillón L.,Denitrification of high nitrate concentration wastewater usingalternative carbon sources, J. Hazard. Mater., 2010, 173, 682-688, DOI: 10.1016/j.jhazmat.2009.08.140.[WoS][Crossref]
  • [5] Wąsik E., Bohdziewicz J., Błaszczyk M., Removal of nitrates fromground water by a hybrid process of biological denitrificationand microfiltration membrane, Process Biochem., 2001, 37,57-64, DOI: 10.1016/s0032-9592(01)00177-7.[Crossref]
  • [6] Lee N.M., Welander T., The effect of different carbon sources onrespiratory denitrification in biological wastewater treatment,J. Ferment. Bioeng., 1996, 82, 277-285, DOI: 10.1016/0922-338x(96)88820-9.[Crossref]
  • [7] Shen J., He R., Han W., Sun X., Li J., Wang L., Biologicaldenitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR), J. Hazard. Mater., 2009,172, 595-600, DOI: 10.1016/j.jhazmat.2009.07.045.[WoS][Crossref]
  • [8] Sears K.J., Alleman J.E., Gong W.L., Feasibility of using ultrasonicirradiation to recover active biomass from waste activatedsludge, J. Biotechnol., 2005, 119, 389-399, DOI: 10.1016/j.jbiotec.2005.04.025.[Crossref]
  • [9] Her J.-J., Huang J.-S., Influences of carbon source and C/N ratioon nitrate/nitrite denitrification and carbon breakthrough,Bioresour. Technol., 1995, 54, 45-51, DOI: 10.1016/0960-8524(95)00113-1.[Crossref]
  • [10] Nuhoglu A., Pekdemir T., Yildiz E., Keskinler B., Akay G., Drinkingwater denitrification by a membrane bio-reactor, Water Res.,2002, 36, 1155-1166, DOI: 10.1016/s0043-1354(01)00344-x.[Crossref]
  • [11] Glass C., Silverstein J., Denitrification kinetics of high nitrateconcentration water: pH effect on inhibition and nitriteaccumulation, Water Res., 1998, 32, 831-839, DOI: 10.1016/s0043-1354(97)00260-1.[Crossref]
  • [12] Ravindran V., Tsai H.-H., Williams M.D., Pirbazari M., Hybridmembrane bioreactor technology for small water treatmentutilities: Process evaluation and primordial considerations,J. Membr. Sci., 2009, 344, 39-54, DOI: 10.1016/j.memsci.2009.07.032.[Crossref][WoS]
  • [13] Vacková L., Srb M., Stloukal R., Wanner J., Comparisonof denitrification at low temperature using encapsulatedParacoccus denitrificans, Pseudomonas fluorescens andmixed culture, Bioresour. Technol., 2011, 102, 4661-4666, DOI:10.1016/j.biortech.2011.01.024.[WoS][Crossref]
  • [14] Oh J., Silverstein J., Oxygen inhibition of activated sludgedenitrification, Water Res., 1999, 33, 1925-1937, DOI: 10.1016/s0043-1354(98)00365-0.[Crossref]
  • [15] Sözen S., Çokgör E.U., Orhon D., Henze M., Respirometricanalysis of activated sludge behaviour-II. Heterotrophic growthunder aerobic and anoxic conditions, Water Res., 1998, 32, 476-488, DOI: 10.1016/s0043-1354(97)00210-8.[Crossref]
  • [16] Li X., Chu H.P., Membrane bioreactor for the drinking watertreatment of polluted surface water supplies, Water Res., 2003,37, 4781-4791, DOI: 10.1016/s0043-1354(03)00424-x.[Crossref]
  • [17] McAdam E.J., Judd S.J., Optimisation of dead-end filtrationconditions for an immersed anoxic membrane bioreactor,J. Membr. Sci., 2008, 325, 940-946, DOI: 10.1016/j.memsci.2008.09.032.[Crossref][WoS]
  • [18] Tian J., Liang H., Nan J., Yang Y., You S., Li G., Submergedmembrane bioreactor (sMBR) for the treatment of contaminatedraw water, Chem. Eng. J., 2009, 148, 296-305, DOI: 10.1016/j.cej.2008.08.032.[Crossref][WoS]
  • [19] Vasiliadou I.A., Pavlou S., Vayenas D.V., A kinetic study ofhydrogenotrophic denitrification, Process Biochem., 2006, 41,1401-1408, DOI: 10.1016/j.procbio.2006.02.002.[Crossref]
  • [20] McAdam E.J., Judd S.J., A review of membrane bioreactorpotential for nitrate removal from drinking water, Desalination,2006, 196, 135-148, DOI: 10.1016/j.desal.2006.03.008.[Crossref]
  • [21] Fenu A., Guglielmi G., Jimenez J., Spèrandio M., Saroj D., LesjeanB., et al., Activated sludge model (ASM) based modelling ofmembrane bioreactor (MBR) processes: A critical review withspecial regard to MBR specificities, Water Res., 2010, 44, 4272-4294, DOI: 10.1016/j.watres.2010.06.007.[Crossref][WoS]
  • [22] Akunna J.C., Bizeau C., Moletta R., Nitrate and nitrite reductionswith anaerobic sludge using various carbon sources: Glucose,glycerol, acetic acid, lactic acid and methanol, Water Res., 1993,27, 1303-1312, DOI: 10.1016/0043-1354(93)90217-6.[Crossref]
  • [23] McAdam E.J., Judd S.J., Denitrification from drinking waterusing a membrane bioreactor: Chemical and biochemicalfeasibility, Water Res., 2007, 41, 4242-4250, DOI: 10.1016/j.watres.2007.05.059.[Crossref][WoS]
  • [24] Sison N.F., Hanaki K., Matsuo T., High loading denitrification bybiological activated carbon process, Water Res., 1995, 29, 2776-2779, DOI: 10.1016/0043-1354(95)00119-6.[Crossref]
  • [25] Sison N.F., Hanaki K., Matsuo T., Denitrification with externalcarbon source utilizing adsorption and desorption capabilityof activated carbon, Water Res., 1996, 30, 217-227, DOI:10.1016/0043-1354(95)00118-5.[Crossref]
  • [26] Ergas S.J., Rheinheimer D.E., Drinking water denitrificationusing a membrane bioreactor, Water Res., 2004, 38, 3225-3232,DOI: 10.1016/j.watres.2004.04.019.[Crossref][WoS]
  • [27] Buttiglieri G., Malpei F., Daverio E., Melchiori M., Nieman H.,Ligthart J., Denitrification of drinking water sources by advancedbiological treatment using a membrane bioreactor, Desalination,2005, 178, 211-218, DOI: 10.1016/j.desal.2004.11.038.[Crossref]
  • [28] Nalcaci O.O., Böke N., Ovez B., Potential of the bacterial strainAcidovorax avenae subsp. avenae LMG 17238 and macro algaeGracilaria verrucosa for denitrification, Desalination, 2011, 274,44-53, DOI: 10.1016/j.desal.2011.01.067.[WoS][Crossref]
  • [29] Al-Malack M.H., Determination of biokinetic coefficients of animmersed membrane bioreactor, J. Membr. Sci., 2006, 271,47-58, DOI: 10.1016/j.memsci.2005.07.008.[Crossref]
  • [30] Doran P.M., Bioprocess Engineering Principles, Elsevier Ltd.,Oxford, UK, 2004.
  • [31] Shuler M.L., Kargi F., Bioprocess Engineering, Basic Concepts,2nd ed., Prentice Hall Inc., 2002.
  • [32] Peng J., Xue G., Mathematical Modeling of Hollow-fiberMembrane System in Biological Wastewater Treatment, J. Syst.Cybern. Inf., 2006, 4, 47-52.
  • [33] Di Trapani D., Capodici M., Cosenza A., Di Bella G., ManninaG., Torregrossa M., et al., Evaluation of biomass activity andwastewater characterization in a UCT-MBR pilot plant by meansof respirometric techniques, Desalination, 2011, 269, 190-197,DOI: 10.1016/j.desal.2010.10.061.[Crossref][WoS]
  • [34] Blanch W.H., Clark S.D., Biochemical Engineering, MarcelDekker Inc., New York, USA, 1997.
  • [35] Chung Y.C., Neethling J.B., Viability of anaerobic digestersludge, J. Environ. Eng.-ASCE, 1990, 116, 330–342.
  • [36] APHA 1995, Standards Methods for the Examination of Waterand Wastewater, 19th ed., American Public Health Association,Washington, DC, 1995.
  • [37] ISO 7890-1:1986, Water quality: Determination of nitrate, Part1: 2,6-Dimethylphenol spectrometric method, InternationalOrganization of Standardization, Geneve, 1986.
  • [38] ISO 6777:1984 Water quality: Determination of nitrite, Molecularabsorption spectrometric method, International Organization ofStandardization, Geneve, 1984.
  • [39] ISO 8467:1993, Water quality: Determination of permanganateindex, International Organization of Standardization, Geneve,1993.
  • [40] Tchobanoglous G., Burton F.L., Stensel H.D., Wastewaterengineering, Treatment and Reuse, McGraw Hill, USA, 2003.
  • [41] Vesilind P.A., Wastewater Treatment Plant Design, WaterEnvironment Federation, TJ International Ltd., Cornwall, GreatBritain, 2003.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.