Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Liquid chromatographic determination of glyphosate and aminomethylphosphonic acid residues in rapeseed with MS/MS detection or derivatization/fluorescence detection

Content

Title variants

Languages of publication

EN

Abstracts

EN

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

accepted
1 - 4 - 2015
online
22 - 6 - 2015
received
8 - 12 - 2014

Contributors

  • Institute of Plant Protection – National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland
  • Institute of Plant Protection – National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland

References

  • [1] Franz J.E, Mao M.K., Sikorski J.A., Glyphosate: A unique global herbicide, Am. Chem. Soc., 1997, 189, 163-175
  • [2] Duke S.O., Powles S.B., Glyphosate: a once-in-a-century herbicide, Pest. Manag. Sci., 2008, 64, 319-325
  • [3] Tomlin C.D.S., The Pesticide Manual, Thirteenth ed., British Crop Protection Council, Hampshire, UK, 2003
  • [4] Tan S., Evans R., Singh B., Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops, Amino. Acids., 2006, 30, 195-204
  • [5] Mitsis T., Efthimiadou A., Bilalis D.J., Danalatos N.G., Efthimiadis P., Konstantas A., Maximizing oilseed rape’s yield by glyphosate under Mediterranean conditions, Ind. Crop. Prod., 2011, 33, 544-548
  • [6] Glass R.L., Adsorption of glyphosate by soils and clay minerals, J. Agr. Food Chem., 1987, 35, 497-500
  • [7] Borggaard O.K., Gimsing A.L., Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review, Pest. Manag. Sci., 2008, 64, 441-456
  • [8] Vreeken R.J., Speksnijder P., Bobeldijk-Pastorova I., Noij T.H.M., Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by online solid-phase extraction-high-performance liquid chromatography-electrospray ionization mass spectrometry, J. Chromatogr. A., 1998, 794, 187-199
  • [9] Williams G.M., Kroes R., Munro I.C., Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans, Regul. Toxicol. Pharm., 2000, 31, 117-165
  • [10] Cuhra M., Traavik T., Bohn T., Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna, Ecotoxicology, 2013, 22, 251-262
  • [11] Tesfamariam T., Bott S., Cakmak I., Romheld V., NeumannG., Glyphosate in the rhizosphere – Role of waiting times and different glyphosate binding forms in soils for phytotoxicity to non-target plants, Eur. J. Agron. 2009, 31, 126-132
  • [12] Tomita M., Okuyama T., Nigo Y, Uno B., Kawai S., Determination of glyphosate and its metabolite, (aminomethyl) phosphonic acid, in serum using capillary electrophoresis, J. Chromatogr., 1991, 571, 324-330
  • [13] Thongprakaisang S., Thiantanawat A., Rangkadilok N., Suriyo T., Satayavivad J., Glyphosate induces human breast cancer cells growth via estrogen receptors, Food Chem. Toxicol., 2013, 59, 129-136
  • [14] Sandrini J.Z., Rola R.C., Lopes F.M., Buffon H.F., Freitas M.M., de Martinez Gaspar M.C., et al., Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies, Aquat. Toxicol., 2013, 130, 171-173
  • [15] Łozowicka B., Jankowska M., Rutkowska E., Kaczyński P., Comparison of two preparation procedures for determination of pesticides residues in oilseed rape by gas chromatography, Chem. Anal., 2009, 54, 367-387
  • [16] Garcia-Reyes J.F., Ferrer C., Gomez-Ramos M.J., Molina-Diaz A., Fernandez-Alba A.R., Determination of pesticide residues in olive oil and olives, Trends Anal. Chem., 2007, 26, 239-251
  • [17] Popp M., Hann S., Mentler A., Fuerhacker M., Stingeder G., Koellensperger G., Determination of glyphosate and AMPA in surface and waste water using high-performance ion chromatography coupled to inductively coupled plasma dynamic reaction cell mass spectrometry (HPIC-ICP-DRC-MS), Anal. Bioanal. Chem., 2008, 391, 695-699
  • [18] Küsters M., Gerhartz M., Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin, J Sep. Sci., 2010, 33, 1139-1146
  • [19] de Llasera M.P., Gomez-Almaraz L., Vera-Avila L.E., Pena-Alvarez A., Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit, J. Chromatogr. A., 2005, 1093, 139-146
  • [20] Marek L.J., Koskinen W.C., Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography-tandem mass spectrometry, Pest. Manag. Sci., 2014, 70, 1158-1164
  • [21] Botero-Coy A.M., Ibanez M., Sancho J.V., Hernandez F., Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry, J. Chromatogr. A., 2013, 1292, 132-141
  • [22] Goscinny S., Unterluggauer H., Aldrian J., Hanot V., Masselter S., Determination of glyphosate and its metabolite AMPA (Aminomethylphosphonic Acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS, Food Anal. Methods., 2012, 5, 1177-1185
  • [23] Qian K., Tang T., Shi T., Wang F., Li J., Cao Y., Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride, Anal. Chim. Acta., 2009, 635, 222-226
  • [24] Martins-Junior H.A., Lebre D.T., Wang A.Y., Pires M.A.F., Bustillos O.V., An alternative and fast method for determination of glyphosate and aminomethylphosphonic acid (AMPA) residues in soybean using liquid chromatography coupled with tandem mass spectrometry, Rapid. Commun. Mass. Sp., 2009, 23, 1029-1034
  • [25] Li X., Xu J., Jiang Y., Chen L., Xu Y., Pan C., Hydrophilic-interaction liquid chromatography (HILIC) with DAD and mass spectroscopic detection for direct analysis of glyphosate and glufosinate residues and for product quality control, Acta. Chromatogr., 2009, 21, 559-576
  • [26] Duran Meras I., Galeano Diaz T., Alexandre Franco M., Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water previous derivatization with NBD-Cl and by parcial least sqares calibration (PLS), Talanta, 2005, 65, 7-14
  • [27] Freuze I., Jadas-Hecart A., Royer P.Y., Communal, Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water, J. Chromatogr. A., 2007, 1175, 197-206
  • [28] Chang S.Y., Liao C.H., Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection, J. Chromatogr. A., 2002, 959, 309-315
  • [29] Goodwin L., Startin J.R., Keely B.J., Goodall D.M., Analysis of glyphosate and glufosinate by capillary electrophoresis–mass spectrometry utilising a sheathless microelectrospray interface, J. Chromatogr. A., 2003, 1004, 107-119
  • [30] Zhu Y., Zhang F., Tong C., Liu W., Determination of glyphosate by ion chromatography, J. Chromatogr. A., 1999, 850, 297-301
  • [31] Patsias J., Papadopoulou A., Papadopoulou-Mourkidou E., Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization, J. Chromatogr. A., 2001, 932, 83-90
  • [32] Hudzin Z.H., Gralak D.K., Drabowicz J., Luczak J., Novel approach for the simultaneous analysis of glyphosate and its metabolites, J. Chromatogr. A., 2002, 947, 129-141
  • [33] Börjesson E., Torstensson L., New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil, J. Chromatogr. A., 2000, 886, 207-216
  • [34] Gonzalez-Martinez M.A., Brun E.M., Puchades R., Maquieira A., Ramsey K., Rubio F., Glyphosate immunosensor. Application for water and soil analysis, Anal. Chem., 2005, 77, 4219-4227
  • [35] Lee E.A., Zimmerman L.R., Bhullar B.S., Thurman E.M., Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate, Anal. Chem., 2002, 74, 4937-4943
  • [36] Deen T.S.A., Hibbert D.B, Hook J.M., Wells R.J., Quantitative nuclear magnetic resonance spectrometry - II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by1H and31P QNMR spectrometry, Anal. Chim. Acta., 2002, 474, 125-135
  • [37] Sato M., Yamashita A., Kikuchi M., Ito T., Honda M., Simultaneous analysis of phosphorus-containing amino acid type herbicides and their metabolites in human samples using N-acetyl,O-methyl derivatives by LC/MS, Jpn. J. Forensic Sci. Technol., 2009, 14, 35-43
  • [38] Hori Y., Fujisawa M., Shimada K., Sato M., Kikuchi M., Honda M., et al., Quantitative determination of glufosinate in biological samples by liquid chromatography with ultraviolet detection after p-nitrobenzoyl derivatization, J. Chromatogr. B., 2002, 767, 255-262
  • [39] Khrolenko M.V., Wieczorek P.P., Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride, J. Chromatogr. A., 2005, 1093, 111-117
  • [40] Sancho J.V., Hidalgo C., Hernandez F., Lopez F.J., Hogendoorn E.A., Dijkman E., Rapid determination of glyphosate residues and its main metabolite ampa in soil samples by liquid chromatography, Int. J. Environ. An. Ch., 1996, 62, 53-63
  • [41] Nedelkoska T.V., Low G.K.C., High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate, Anal. Chim. Acta., 2004, 511, 145-153
  • [42] Hori Y., Fujisawa M., Shimada K., Sato M., Honda M., Hirose Y., Enantioselective analysis of glufosinate using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography, J. Chromatogr. B., 2002, 776, 191-198
  • [43] Motojyuku M., Saito T., Akieda K., Otsuka H., Yamamoto I., Inokuchi S., Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography-mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 2008, 875, 509-514
  • [44] Hanke I., Singer H., Hollender J., Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection, Anal. Bioanal. Chem., 2008, 391, 2265-2276
  • [45] Ibanez M., Pozo O.J., Sancho J.V., Lopez F.J., Hernandez F., Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. A., 2005, 1081, 145-155
  • [46] Ibanez M., Pozo O.J., Sancho J.V., Lopez F.J., Hernandez F., Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry, J. Chromatogr. A., 2006, 1134, 51-55
  • [47] Bernal J., Martin M.T., Soto M.E., Nozal M.J., Marotti I., Dinelli G., et al., Determination of glyphosate and (aminomethyl)phosphonic acid in soil, plant and animal matrixes, and water by capillary gas chromatography with mass-selective detection, Agr. Food Chem., 2012, 60, 4017-4025
  • [48] Botero-Coy A.M., Ibanez M., Sancho J.V., Hernandez F., Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry, J. Chromatogr. A., 2013, 1292, 132-141
  • [49] Yoshioka N., Asano M., Kuse A., Mitsuhashia T., Nagasakic Y., Uenob Y., Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography, J. Chromatogr. A., 2011, 1218, 3675-3680
  • [50] SANCO, Method validation and quality control procedures for pesticide residues analysis in food and feed. Document no. SANCO/12495/2011, (http://ec.europa.eu/food/plant/protection/recources/qualcontrol_en.pdf (2012)
  • [51] Pongraveevongsa P., Khobjai W., Wunnapuk K., P. Sribanditmongkol P., High-performance liquid chromatography/uv detection for determination of glyphosate in serum and gastric content, Chiang Mai Med. J., 2008, 47, 149-199
  • [52] Piriyapittaya M., Jayanta S., Mitra S., Leepipatpiboon N., Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector, J. Chromatogr. A., 2008, 1189, 483-492
  • [53] Coutinho C.F.B., Coutinho L.F.M., Mazo L.H., Nixdorf S.L., Camara C.A.P., Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection, J. Chromatogr. A., 2008, 1208, 246-249
  • [54] Abdullah M.P., Daud J., Hong K.S., Yew C.H., Improved method for the determination of glyphosate in water, J. Chromatogr. A., 1995, 697, 363-369
  • [55] Chen M.X., Cao Z.Y., Jiang Y., Zhu Z.W., Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry, J. Chromatogr. A., 2013, 1272, 90-99
  • [56] Sun Y., Wang C., Wen Q., Wang G., Wang H., Qu Q., et al., Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride, Chromatographia, 2010, 72, 679-686
  • [57] Sanchis J., Kantiani L., Llorca M., Rubio F., Ginebreda A., Fraile J., et al., Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solidphase extraction followed by liquid chromatography coupled to tandem mass spectrometry, Anal. Bioanal. Chem., 2012, 402, 2335-2345
  • [58] Sanchez-Bayo F., Hyne R.V., Desseille K.L., An amperometric method for the detection of amitrole, glyphosate and its aminomethylphosphonic acid metabolite in environmental waters using passive samplers, Anal. Chim. Acta., 2010, 675, 125-131
  • [59] Hao C., Morse D., Morra F., Zhao X., Yang P., Nunn B., Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandemmass spectrometry using reversed-phase and weak anion-exchange mixed-mode column, J. Chromatogr. A., 2011, 1218, 5638-5643
  • [60] Li B., Deng X., Guo D., Jin S., Determination of glyphosate and aminomethylphosphonic acid residues in foods using high performance liquid chromatography-mass spectrometry/mass spectrometry, Chinese J. Chromatogr., 2007, 25, 486-490
  • [61] Ferrer C., Lozano A., Aguera A., Giron A.J., Fernandez-Alba A.R., Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables, J. Chromatogr. A., 2011, 1218, 7634-769

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_chem-2015-0107
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.