Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Study of N-doped TiO2 thin films for
photoelectrochemical hydrogen
generation from water

Title variants
Languages of publication
The present work deals with nitrogen-doped
stoichiometric TiO2:N and non-stoichiometric TiO2−x:N thin
films deposited by means of dc-pulsed reactive sputtering
for application as photoanodes for hydrogen generation
from water, using solar energy. Stoichiometric thin films
of TiO2 crystallize as a mixture of anatase and rutile while
rutile phase predominates in TiO2:N at higher nitrogen flow
rates as shown by X-ray diffraction at grazing incidence,
XRD GID. Lack of bulk nitridation of stoichiometric
TiO2:N is indicated by valence-to-core X-ray emission
spectroscopy, XES, analysis. The energy band gap as
well as flat band potential remain almost unaffected by
increasing nitrogen flow rate in this case. In contrast to
that, non-stoichiometric thin films of TiO2‑x:N demonstrate
systematic evolution of the structural, morphological,
optical and photolectrochemical properties upon
increasing level of nitrogen doping. Pronounced changes
in the growth pattern of non-stoichiometric TiO2-x:N upon
varied nitrogen flow rate, demonstrated by scanning
electron microscopy, SEM, can be easily correlated with
the crystallographic properties studied by XRD GID.
Relative positions of Kβ’’ XES lines of the TiO2-x:N thin
films, which depend strongly on the nature of the ligands
and their local coordination, change with the increasing
nitrogen flow. Doping of nonstoichiometric titanium
dioxide with nitrogen shifts the absorption spectrum
towards the visible range and increases considerably the
flat band potential which is beneficial for water photolysis.

Physical description
4 - 11 - 2014
6 - 11 - 2013
8 - 4 - 2015
  • AGH University of Science
    and Technology, Academic Centre for Materials and Nanotechnology,
    Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of
    Science and Technology, Faculty of Physics and Applied Computer
    Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science
    and Technology, Academic Centre for Materials and Nanotechnology,
    Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of
    Science and Technology, Faculty of Physics and Applied Computer
    Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of
    Science and Technology, Faculty of Physics and Applied Computer
    Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science
    and Technology, Faculty of Materials Science and Ceramics,
    Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science
    and Technology, Faculty of Materials Science and Ceramics,
    Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology,
    Faculty of Computer Science, Electronics and Telecommunications,
    Al. Mickiewicza 30, 30-059 Krakow, Poland
  • [1] Van de Krol R., Grätzel M. (eds.), Photoelectrochemical HydrogenProduction, Electronic Materials: Science & Technology 102,Springer Science+Business Media, 2012.
  • [2] Huang C.W., Liao C.H., Wu J.C.S., Liu Y.C, Chang C.L., Wu C.H., etal., Hydrogen generation from photocatalytic water splitting overTiO2 thin film prepared by electron beam-induced deposition,Int. J. Hydrogen Energ., 2010, 35, 12005-12010.
  • [3] Radecka M., Rekas M., Trenczek-Zajac A., Zakrzewska K.,Importance of the band gap energy and flat band potential forapplication of modified TiO2 photoanodes in water photolysis, J.Power Sources, 2008, 181, 46-55.
  • [4] Fujishima A., Honda K., Electrochemical photolysis of water at asemiconductor electrode, Nature, 1972, 238, 37-38.
  • [5] Zakrzewska K., Brudnik A., Radecka M., Posadowski W.,Reactively sputtered TiO2-x thin films with plasma-emissioncontrolleddeparture from stoichiometry, Thin Solid Films, 1999,343, 152-155.
  • [6] Radecka M., Trenczek-Zajac A., Zakrzewska K., Rekas M.,Effect of oxygen nonstoichiometry on photo-electrochemicalproperties of TiO2−x, J. Power Sources, 2007, 173, 816-821.
  • [7] Vratny F., Micale F., Reflectance spectra of non-stoichiometrictitanium oxide, niobium oxide, and vanadium oxide, Trans.Faraday Soc., 1963, 59, 2739-2749.
  • [8] Brudnik A., Gorzkowska-Sobaś A., Pamuła E., Radecka M.,Zakrzewska K., Thin film TiO2 photoanodes for water photolysisprepared by dc magnetron sputtering, J. Power Sources, 2007,173, 774-780.
  • [9] Radecka M., Rekas M., Kusior E., Zakrzewska K., Heel A.,Michalow K.A., et al., TiO2-based nanopowders and thin films forphotocatalytical applications, J. Nanosci. Nanotechnol., 2010,10, 1032-1042.
  • [10] Radecka M., Wierzbicka M., Komornicki S., Rekas M., Influenceof Cr on photoelectrochemical properties of TiO2 thin films,Physica B, 2004, 348, 160-168.
  • [11] Trenczek-Zajac A., Radecka M., Jasinski M., Michalow K.A.,Rekas M., Kusior E., et al., Influence of Cr on structural andoptical properties of TiO2:Cr nanopowders prepared by flamespray synthesis, J. Power Sources, 2009, 194, 104-111.
  • [12] Radecka M., Zakrzewska K., Wierzbicka M., Gorzkowska A.,Komornicki S., Study of the TiO2-Cr2O3 system forphotoelectrolytic decomposition of water, Solid State Ionics,2003, 157, 379-386.
  • [13] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Visible-lightphotocatalysis in nitrogen-doped titanium oxides, Science,2001, 293, 269-271.
  • [14] Di Valentin C., Pacchioni G.F., Selloni A., Origin of the differentphotoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B,2004, 70, 85116 .
  • [15] Lee S.H., Yamasue E., Okumura H., Ishihara K.N, Effect ofoxygen and nitrogen concentration of nitrogen doped TiOx filmas photocatalyst prepared by reactive sputtering, Appl. Catal.A-Gen., 2009, 371, 179-190.[WoS]
  • [16] Radecka M., Pamula E., Trenczek-Zajac A., Zakrzewska K.,Brudnik A., Kusior E., et al., Chemical composition,crystallographic structure and impedance spectroscopy oftitanium oxynitride TiNxOy thin films, Solid State Ionics, 2011,192, 693-698.
  • [17] Trenczek-Zajac A., Pamula E., Radecka M., Kowalski K.,Reszka A., Brudnik A., et al., Thin films of TiO2:N for photoelectrochemicalapplications, J. Nanosci. Nanotechnol., 2012,12, 4703-4709.
  • [18] Henderson M.A., A surface science perspective on TiO2photocatalysis, Surf. Sci. Rep., 2011, 66, 185-297.
  • [19] Wong M.S., Chou H.P., Yang T.S., Reactively sputtered N-dopedtitanium oxide films as visible-light photocatalyst, Thin SolidFilms, 2006, 494, 244-249.
  • [20] Dong F., Guo S., Li H., Wang X., Wu Z., Enhancement of the visiblelight photocatalytic activity of C-doped TiO2 nanomaterialsprepared by a green synthetic approach, J. Phys. Chem. C, 2011,115, 13285-13292.
  • [21] Chaudhuri R.G., Paria S., Visible light induced photocatalyticactivity of sulfur doped hollow TiO2 nanoparticles, synthesizedvia a novel route, Dalton T., 2014, 43, 5526-5534.
  • [22] Kollbek K., Sikora M., Kapusta Cz., Szlachetko J., Brudnik A.,Kusior E. et al., X-ray absorption and emission spectroscopy ofTiO2 thin films with modified anionic sublattice, Radiat. Phys.Chem., 2013, 93, 40-46.
  • [23] Szlachetko J., Sa J., Rational design of oxynitride materials: Fromtheory to experiment, Cryst. Eng. Comm., 2013, 15, 2583-2587.
  • [24] Fakhouri H., Pulpytel J., Smith W., Zolfaghari A., MortahebH.R., Meshkini F., et al., Control of the visible and UV lightwater splitting and photocatalysis of nitrogen doped TiO2 thinfilms deposited by reactive magnetron sputtering, Appl. Catal.B-Environ., 2014, 144, 12-21.
  • [25] Zhu L., Xie J., Cui X., Shen J., Yang X., Zhang Z.,Photoelectrochemical and optical properties of N-doped TiO2thin films prepared by oxidation of sputtered TiNx films, Vacuum,2010, 84, 797-802.
  • [26] Babu V.J., Kumar M.K., Nair A.S., Kheng T.L., Allakhverdiev S.I.,Ramakrishna S., Visible light photocatalytic water splitting forhydrogen production from N-TiO2 rice grain shaped electrospunnanostructures, Int. J. Hydrogen Energ., 2012, 37, 8897-8904.
  • [27] Wang C., Hu Q., Huang J., Wu L., Deng Z., Liu Z., et al., Efficienthydrogen production by photocatalytic water splitting usingN-doped TiO2 film, Appl. Surf. Sci., 2013, 283, 188-192.
  • [28] R. Brahimi, Y. Bessekhouad, M. Trari, Physical properties ofNxTiO2 prepared by sol–gel route, Physica B, 2012, 407, 3897-3904.
  • [29] Chen X., Burda X., Guo J., Smith K.E., Glans P.A., Learmonth T.,X-ray absorption and emission study of nitrogen-doped titaniananoparticles, Arabian J. Sci. Eng., 2010, 35, 65-71.
  • [30] Braun A., Akurati K.K., Fortunato G., Reifler F.A., Ritter A.,Harvey A.S., et al., Nitrogen doping of TiO2 photocatalyst formsa second eg state in the oxygen 1s NEXAFS pre-edge, J. Phys.Chem. C, 2010, 114, 516-519.
  • [31] Radecka M., Zakrzewska K., Czternastek H., Stapinski T.,Debrus S., The influence of thermal annealing on the structural,electrical and optical properties of TiO2-x thin films, Appl. Surf.Sci., 1993, 65, 227-234.
  • [32] Szlachetko J., Nachtegaal M., De Boni E., Willimann M.,Safonova O., Sa J., et al., A von Hamos X-ray spectrometer basedon a segmented-type diffraction crystal for single-shot X-rayemission spectroscopy and time-resolved resonant inelasticX-ray scattering studies, Rev. Sci. Instrum., 2012, 83, 103105.
  • [33] Kollbek K., Sikora M., Kapusta Cz., Szlachetko J., Zakrzewska K.,Kowalski K., et al., X-ray spectroscopic methods in the studies of nonstoichiometric TiO2−x thin films, Appl. Surf. Sci., 2013,281, 100-104.
  • [34] Thornton, J. A., Influence of apparatus geometry and depositionconditions on the structure and topography of thick sputteredcoatings, J. Vac. Sci. Technol., 1974, 11, 666.
  • [35] Glatzel P., Bergmann U., High resolution 1s core hole X-rayspectroscopy in 3d transition metal complexes-electronic andstructural information, Coordin. Chem. Rev., 2005, 249, 65-95.
  • [36] Glatzel P., Weng T.C., Kvashina K., Swarbrick J., Sikora M.,Gallo E., et al., Reflections on hard X-ray photon-in/photonoutspectroscopy for electronic structure studies, J. ElectronSpectrosc. Relat. Phenom., 2013, 188, 17-25.
  • [37] Eeckhout S.G., Sofanova O.V., Smolentsev G., Biasioli M.,Safonov V.A., Vykhodtseva L.N., et al., Cr local environmentby valence-to-core X-ray emission spectroscopy, J. Anal. At.Spectrom., 2009, 24, 215-223.[WoS]
  • [38] Irie H., Watanabe Y., Hashimoto K., Nitrogen-concentrationdependence on photocatalytic activity of TiO2-xNx powders, J.Phys. Chem. B, 2003, 107, 5483-5486.
  • [39] Di Valentin C., Finazzi E., Pacchioni G., Selloni A., Livraghi S.,Paganini M.C., et al., N-doped TiO2: Theory and experiment,Chem. Phys., 2007, 339, 44-56.
  • [40] Di Valentin C., Pacchioni G., Selloni A., Electronic structureof defect states in hydroxylated and reduced rutile TiO2(110)surfaces, Phys. Rev. Lett., 2006, 97, 166803.
  • [41] Nakano Y., Morikawa T., Ohwaki T., Taga Y., Deep-level opticalspectroscopy investigation of N-doped TiO2 films, Appl. Phys.Lett., 2005, 86, 132104.
  • [42] Chan M.H., Lu F.H., Characterization of N-doped TiO2 filmsprepared by reactive sputtering using air/Ar mixtures, Thin SolidFilms, 2009, 518, 1369-1372.
  • [43] DeLoach J.D., Scarel G., Aita C.R., Correlation between titaniafilm structure and near ultraviolet optical absorption, J. Appl.Phys., 1999, 85, 2377-2384.
  • [44] Khoshman J.M., Kordesch M.E., Optical absorption in amorphousInN thin films, J. Non-Cryst. Solids, 2006, 352, 5572-5577.
  • [45] Frova A., Boddy P.J., Chen Y.S., Electromodulation of the opticalconstants of rutile in the UV, Phys. Rev., 1967, 157, 700-708.
  • [46] Tang H., Prasad K., Sanjinès R., Schmid P.E., Lévy F., Electricaland optical properties of TiO2 anatase thin films, J. Appl. Phys.,1994, 75, 2042.
  • [47] Deb S.K., Photoconductivity and photoluminescence inamorphous titanium dioxide, Solid State Commun., 1972, 11,713-715.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.