Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Armchair Boron Nitride nanotubes-heterocyclic
molecules interactions: A computational

Title variants
Languages of publication
Ab-initio calculations using density functional
theory (DFT) are used to investigate the non-covalent
interactions between single wall armchair boron nitride
nanotubes (BNNTs) with open ends and several heterocyclic
molecules: thiophene (T; C4H4S), benzothiophene (BT;
C8H6S) and dibenzothiophene (DBT; C12H8S). In the
armchair model the nanotubes exhibit (n, n) chirality; here
we consider n = 5. The exchange-correlation energies are
treated according to the Hamprecht-Cohen-Tozer-Handy
functional in the generalized gradient approximation
(HCTH-GGA). A base function with double polarization is
used. The geometry optimization of (5,5) BNNT-X; X = T, BT
and DBT has been carried out using the minimum energy
criterion in 5 different configurations of the molecules
adsorbed on the nanotube. Our computer simulations have
found that the preferential adsorption site of the molecule
on the nanotube surface is the parallel configuration for
BT and DBT, and at one nanotube end for the T fragment,
with all cases having physical interactions. The polarity
exhibits an increase which favors the possible dispersion,
provided the electrons are polarized. The nanostructure
functionalization increases the chemical reactivity which
in turn enhances interactions between the molecule and
the nanotube. The BNNT-dibenzothiophene work function
reduction as compared with the pristine case yields the
improvement of the field emission properties.
Physical description
16 - 2 - 2015
26 - 2 - 2014
5 - 10 - 2014
  • [1] Rubio A., Corkill J. L., Cohen M., Theory of graphitic boron nitridenanotubes, Phys. Rev. B, 1994, 49, 5081-5084
  • [2] Chopra N. G., Luyken R. J., Cherrey K, Crespi V. H., Cohen M. L.,Louie S. G., Zetl A., Boron Nitride Nanotubes, Science 1995, 269,966-967
  • [3] Golberg D., Bando Y., Unique morphologies of boron nitridenanotubes, Appl. Phys. Lett. 2001, 79, 415-417
  • [4] Huei Lee C., Zhang D., Khin Yap Y., Functionalization, Dispersion,and Cutting of Boron Nitride Nanotubes in Water, J. Phys. Chem.C 2012, 116, 1798- 1804[WoS]
  • [5] Raffa V., Riggio C., Smith M. W., Jordan K. C., Cao W., Cuschieri A.,BNNT-mediated irreversible electroporation: its potential oncancer cells, Technol. Cancer Res. Treat. 2012, 11, 459-465[WoS]
  • [6] Ciofani G., Raffa V., Menciassi A., Cuschieri A., Boron nitridenanotubes: an innovative tool for nanomedicine, Nano Today2009, 4, 8-10[Crossref][WoS]
  • [7] Wu J., Yin L., Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for AmperometricGlucose Enzyme Biosensor, ACS Appl. Mater. Interfaces 2011, 3,4354-4362[WoS][Crossref]
  • [8] Gao Zh., Zhi Ch., Bando Y., Golberg D., Serizawa T., NoncovalentFunctionalization of Disentangled Boron Nitride Nanotubeswith Flavin Mononucleotides for Strong and Stable Visible-LightEmission in Aqueous Solution, ACS Appl. Mater. Interfaces 2011,3, 627-632[WoS][Crossref]
  • [9] Zhi C. Y., Bando Y., Tang C., Honda S., Sato K., Kuwahara H.,Golberg D., Characteristics of Boron Nitride Nanotube–Polyaniline Composites, Angew. Chem. Int. Ed. 2005, 44, 7929-7932
  • [10] Xie S. Y., Wang W., Fernando K. A. S., Wang X., Lin Y., Sun Y. P.,Solubilization of boron nitride nanotubes, Chem. Commun.2005, 29, 3670-3672
  • [11] Rodríguez Juárez A., Chigo Anota E., Hernández Cocoletzi H.,Flores Riveros A., Adsorption of chitosan on BN nanotubes:A DFT investigation Appl. Surf. Sci. 2013, 268, 259-264[WoS]
  • [12] Saikia N., Pati S. K., Deka R. C., First principles calculation onthe structure and electronic properties of BNNTs functionalizedwith isoniazid drug molecule, Appl. Nanosci. 2012, 2, 389-400[Crossref]
  • [13] Chigo Anota E., Hernández Rodríguez L. D., Hernández Cocoletzi G.,Influence of point defects on the adsorption of chitosan onGraphene-like BN nanosheets, Graphene 2013, 1 (2), 124-130
  • [14] Chigo Anota E., Rodríguez Juárez A., Castro M., HernándezCocoletzi H., A density functional theory analysis for theadsorption of the amine group on Graphene and Boron NitrideNanosheets,J. Mol. Model. 2013, 19 (1), 321-328[Crossref][WoS]
  • [15] McKee H. C., Herndon L. K., Withrow J. R., Estimation ofThiophene in Gasoline, Anal. Chem. 1948, 20 (4), 301-303[Crossref]
  • [16] Moore R. J., Greensfelder B. S., The Catalytic Synthesis ofBenzothiophene, J. Am. Chem. Soc. 1947, 69 (8), 2008-2009
  • [17] Chigo Anota E., Hernández Cocoletzi G., GGA-based analysis ofthe metformin adsorption on BN Nanotubes, Physica E 2014, 56,134-140[WoS]
  • [18] Chigo Anota E., Hernández Cocoletzi H., Salazar Villanueva M.,García Toral D., First-principles investigation of the interactionbetween BN, SiC and ZnO Nanotubes -BaTiO3, Superlatt.Microstruct. 2013, 63, 298-305
  • [19] Chigo Anota E., Hernández Cocoletzi G., Sánchez Ramírez J. F.,Armchair BN Nanotubes - Levothyroxine interactions:A Molecular Study, J. Mol. Model. 2013, 19, 4991-4996[WoS][Crossref]
  • [20] Baumeier B., Krüger P., Pollmann J., Structural, elastic, andelectronic properties of SiC, BN, and BeO nanotubes, Phys. Rev.B 2007, 76, 085407(1)-(10)[WoS]
  • [21] Boese A. D., Handy N. C., A new parametrization of exchange–correlation generalized gradient approximation functionals, J.Chem. Phys. 2001, 114, 5497-5503
  • [22] Delley B., An All-Electron Numerical Method for Solving theLocal Density Functional for Polyatomic Molecules, J. Chem.Phys. 1990, 92, 508-517
  • [23] Delley B., From molecules to solids with the DMol3 approach,J. Chem. Phys. 2000, 113, 7756-7764
  • [24] Geerlings P., De Proft F., Langenaeker W., Conceptual DensityFunctional Theory, Chem. Rev. 2003, 103, 1793-1874
  • [25] Chigo Anota E., Ramírez Gutiérrez R. E., Pérez Sanchéz F. L.,Sanchéz Ramírez J. F., Structural Characteristics and ChemicalReactivity of Doped Graphene Nanosheets, Graphene 2013, 1(1), 31-36
  • [26] Foresman JB, Frisch Æ. Exploring Chemistry with ElectronicStructure Methods, 2nd ed., Gaussian Inc., USA, 1996
  • [27] Hao S., Zhou G., Duan W., Wu J., Gu B. L., Tremendous spinsplittingeffects in open boron nitride nanotubes: applicationto nanoscale spintronic devices, J. Am. Chem. Soc. 2006, 128,8453(1)-(8)
  • [28] Xiang H. J., Yang J., Hou J. G., Zhu Q., First-principles study ofsmall-radius single-walled BN nanotubes, Phys. Rev. B 2003,68, 035427(1)-(5)
  • [29] Gómez B., Martínez Magadán J. M., A theoretical study ofdibenzothiophene absorbed on open-ended carbon nanotubes,J. Phys. Chem. B 2005, 109, 14868-14875
  • [30] Li S. Semiconductor Physical Electronics, 2nd ed., Springer,USA, 2006
  • [31] Matsunaga N., Molecular Conduction Characteristics from theIntrinsic Molecular Properties, J. Comp. Theor. Nanosci. 2006,3, 1-7
  • [32] Yeon Lee S., Density Functional Theory Calculation of MolecularStructure and Vibrational Spectra of Dibenzothiophene in theGround and the Lowest Triplet State, J. Phys. Chem A 2001, 105,8093-8097
  • [33] Schaffrin R., Trotter J., Structure of dibenzothiophene, J. Chem.Soc. A 1970, 1561-1565[Crossref]
  • [34] Radosavljevi M., Appenzeller J., Derycke V., Martel R.,Avouris Ph., Loiseau A., Cochon J. L., Pigache D., Electricalproperties and transport in boron nitride nanotubes, Appl.Phys. Lett. 2003, 82, 4131-4133
  • [35] Lauret J. S., Arenal R., Ducastelle F., Loiseau A., Cau M.,Attal-Tretout B., Rosencher E., Goux-Capes L., Optical transitionsin single-wall boron nitride nanotubes, Phys. Rev. Lett. 2005,94, 37405(1)-(4)
  • [36] Cumings J., Zettl A., Field emission and current-voltageproperties of boron nitride nanotubes, Solid State Commun.2004, 129, 661-664
  • [37] Ishigami M., Sau J. D., Aloni S., Cohen M. L, Zettl A., Observationof the Giant Stark Effect in Boron-Nitride Nanotubes, Phys. Rev.Lett. 2005, 94, 56804(1)-(4)
  • [38] Gaussian 09, Revision C.01, Frisch M. J., Trucks G. W, Schlegel H. B.,Scuseria G. E., Robb M. A, Cheeseman J. R., Scalmani G., Barone V.,Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X.,Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L.,Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M.,Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery,Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E.,Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J.,Raghavachari K.,. Rendell A, Burant J. C., Iyengar S. S., Tomasi J.,Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E.,Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W.,Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P.,Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B.,Ortiz J. V, Cioslowski J., Fox D. J., Gaussian, Inc., Wallingford CT,2010
  • [39] O’Boyle N. M., Tenderholt A. L., Langner K. M., cclib: A libraryfor package-independent computational chemistry algorithms,J. Comp. Chem. 2008, 29, 839-845 [WoS]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.