Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Structural and morphological properties
of HA-ZnO powders prepared for biomaterials

Title variants
Languages of publication
The purpose of this study was to investigate the
structural and morphological properties of hydroxyapatite
– zinc oxide (HA-ZnO) powders prepared to be used
in an endodontic sealer formulation. The HA-ZnO was
synthesized from hydroxyapatite (HA) in the presence
of zinc oxide (ZnO) sol. The starting reagents were CaO,
H3PO4 and a suspention of ZnO (25% in water). Following
precipitation, the obtained sol was subjected to heat
treatment at 110°C, 400°C, 850°C and 1050°C. The study
focused on the influence of the thermal treatment on the
cristallinity of precipitated powders. X-ray diffraction
was used in order to study the structural properties
of the obtained powder. Fourier Transform Infrared
Spectroscopy (FT-IR) was used in order to evaluate the
interactions between HA and ZnO. The morphology of the
samples was studied by Scanning Electron Microscopy
(SEM). Transmission Electron Microscopy and High
Resolution Transmission Electron Microscopy (TEM,
HRTEM) were used for the determination of particle size
and fractal analysis. The fractal analysis of images using
the standard box-counting method is presented and the
results are discussed. It was demonstrated that the fractal
dimension analysis is a useful method to quantitatively
describe the complex microstructures and it can reveal the
relation between fractal parameters.

Physical description
15 - 10 - 2013
21 - 8 - 2014
28 - 1 - 2015
  • Babeș Bolyai
    University – “Raluca Ripan” Chemistry Research Institute, 30
    Fantanele street, 400294, Cluj-Napoca, Romania
  • Babeș Bolyai
    University – “Raluca Ripan” Chemistry Research Institute, 30
    Fantanele street, 400294, Cluj-Napoca, Romania
  • Technical University
    of Cluj-Napoca, 103-105 Muncii Bvd. 400641 Cluj-Napoca, Romania
  • Babeș Bolyai
    University – “Raluca Ripan” Chemistry Research Institute, 30
    Fantanele street, 400294, Cluj-Napoca, Romania
  • Babeș Bolyai
    University – “Raluca Ripan” Chemistry Research Institute, 30
    Fantanele street, 400294, Cluj-Napoca, Romania
  • Technical University
    of Cluj-Napoca, 103-105 Muncii Bvd. 400641 Cluj-Napoca, Romania
  • Technical University
    of Cluj-Napoca, 103-105 Muncii Bvd. 400641 Cluj-Napoca, Romania
  • METAV, 16-18 Zapada Mieilor St., 71529 Bucharest,
  • [1] Kohsuke M., Yohei M., Takayoshi H., Tomoo M., Kohki E.,Kiyotomi K., A single-site hydroxyapatite-bound zinc catalystfor highly efficient chemical fixation of carbon dioxide withepoxides, Chem. Commun., 2005, 3331–3333.
  • [2] Aderemi O., Bushra P., Safiyyah H., Adeniji S., Henry D.,Preparation and in vitro bioactivity of zinc containing sol-gel–derived bioglass materials, Biomed J., Mate.r Res. A., 2004,69(2), 216-221.
  • [3] Aina V., Malavasi G., Fiorio Pla A., Munaron L., Morterra C., Zinccontainingbioactive glasses: Surface reactivity and behaviourtowards endothelial cells, Acta Biomaterialia 5, 2009, 1211-1222.[Crossref]
  • [4] Vojislav S., Dimitrijević S., Antić-Stanković J., Mitrić M., Jokić B.,Plećaš I. et al., Synthesis, characterization and antimicrobialactivity of copper and zinc-doped hydroxyapatite nanopowders,Applied Surface Science, 2010, 256, 6083-6089.
  • [5] Yuanzhi T., Chappell H.F., Dove M.T., Reeder R.J., Lee Y.J., Zincincorporation into hydroxylapatite, Biomaterials 30, 2009,2864-2872.[WoS]
  • [6] Zhou G., Yubao Li, Wei Xiao, Li Zhang, Yi Zuo, Jing Xue et al.,Synthesis, characterization, and antibacterial activitiesof a novel nanohydroxyapatite/zinc oxide complex, WileyPeriodicals, Inc. J. Biomed. Mater. Res. 85A, 2008, 929-937.
  • [7] Gross K.A., Komarovska L., Viksna A., Efficient zinc incorporationin hydroxyapatite through crystallization of an amorphousphase could extend the properties of zinc apatites, Journal ofthe Australian Ceramic Society Volume, 2013, 49
  • [2], 129–135.
  • [8] Tavassoli S., Alaghemand H., Hamze F., Ahmadian Babaki F,Rajab-Nia R, Bagher Rezvani M. et al., Antibacterial, physical andmechanical properties of flowable resin composites containingzinc oxide nanoparticles, Dental Materials, 2013, 29, 495–505.[WoS]
  • [9] Horiuchi S, Hiasa M, Yasue A, Sekine K, Hamada K, Asaoka Ket al., Fabrications of zinc releasing biocement combining zinccalcium phosphate to calcium phosphate cement, Journal of themechanical behavior of biomedical materials, 2014, 29, 151 –160.
  • [10] Toledano M., Sauro S., Cabello I., Watson T., Osorio R., AZn-doped etch-and-rinse adhesive may improve the mechanicalproperties and the integrity at the bonded-dentin interface,Dental Materials, 2013, 29, 142–152.[WoS]
  • [11] Sutha S, Karunakaran S.G., Rajendran V., Enhancement ofantimicrobial and long-term biostability of the zinc-incorporatedhydroxyapatite coated 316L stainless steel implant for biomedicalapplication, Ceramics International, 2013, 39, 5205–5212.[WoS]
  • [12] Mandelbrot B.B., The Fractal Geometry of Nature, Freeman W. H.,San Francisco, USA, 1982.
  • [13] Trif M., Moldovan M., Prejmerean C., Tamas C., Furtos G.,Colceriu A. et al., Microcristaline hydroxyapatite. Obtaining andinvestigation, Journal of Optoelectron Adv. Material, 2007, 9(11),3312-3315.
  • [14] Kraus W., Nolze G., Powder Cell, Appl J. Crystallogr., 1996, 29,301-303.
  • [15] van Bercum J.G.M., Vermeulen A.C., Delhez R., de Keijser T.H.,Mittemeijer E.M., Applicabilities of Warren–Averbach analysisand alternative analysis for separation of size and strainbroadening, J.Appl. Phys., 1994, 27, 345-353.
  • [16] Indrea E., Barbu A., Indirect photon interaction in PbSphotodetectors, Appl. Surf. Sci., 1996, 106, 498-501.
  • [17] Rasband W., National Institutes of Health, Bethesda, Maryland,USA. Available from URL:
  • [18] Karperien A., Charles Sturt University, Australia. Availablefrom URL: html
  • [19] Aldea N., Indrea E., XRLINE, a program to evaluate the crystallitesize of supported metal catalysts by single X-ray profile Fourieranalysis, Comput. Phys. Commun., 1990, 60, 155-163.
  • [20] Tripathi A., Saravanan S., Pattnaik S., Moorthi A., Partridge N.C.,Selvamurugan N., Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissueengineering, International Journal of Biological Macromolecules,2012, 50, 294–299.
  • [21] JCPDS-International Center for Diffraction Data, PDF No. 89-7102,1950.
  • [22] JCPDS-International Center for Diffraction Data, PDF No. 74-0566,1997.
  • [23] Ślósarczyk A., Paszkiewicz Z., Paluszkiewicz C., FTIR and XRDevaluation of carbonated hydroxyapatite powders synthesizedby wet methods, Journal of Molecular Structure, 2005, 657–661,744–747.
  • [24] Le Geros R.Z., Calcium Phosphates in Oral Biology and Medicine.H.M. Myers, Karger, Basel, 1991.
  • [25] Mobasherpour I., Heshajin M. S., Kazemzadeh A., ZakeriM., Synthesis of Nanocrystalline Hydroxyapatite by usingPrecipitation Method, Journal of Alloys and Compounds, 2007,430, 330 – 333.
  • [26] Prakash K.H., Ooi C.P., Kumar R., Khor K.A., Cheang P., Effectof Super Saturation Level on the size and morphology ofHydroxyapatite precipitate, Conference Proceeding: EmergingTechnologies - Nanoelectronics, 2006, 345-349.
  • [27] Brie M., Grecu R., Moldovan M., Prejmerean C., Muşat O., VezsenyiM.,The optical properties of some dimethacrylic composites,Materials Chemistry and Physics, 1999, 60, 240-246.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.