Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

Title variants
Languages of publication
An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE) samples, which are subsequently coated with polyvinylpyrrolidone (PVP) and tannic acid (TAN) single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Atomic Force Microscopy (AFM). The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.
Physical description
12 - 2 - 2014
22 - 12 - 2014
7 - 5 - 2014
  • [1] Huck W.T.S., Artificial skins: hierarchical wrinkling, Nat. Mater., 2005, 4, 271[Crossref]
  • [2] Kidane A.G., Salacinski H., Tiwari A., Bruckdorfer K.R.,Seifalian A.M., Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces, Biomacromolecules, 2004, 5, 798[Crossref]
  • [3] Noh J.H., Baik H.K., Noh I., Park J.-C., Lee I.-S., Surface modification of polytetrafluoroethylene using atmospheric pressure jet for medical application Surf. Coat. Technol., 2007, 201, 5097
  • [4] Dupuy F.P., Savoldelli M., Robert A.M., Robert L., Legeais J.M., Renard G.J.J., Chemotactic penetration of keratocytes in ePTFE polymer in vitro, J. Biomed. Mater. Res., 2001, 56, 487[Crossref]
  • [5] Helmus M.N., Hubbell J.A., Materials selection, Cardiovasc Pathol (Suppl) 1993, 2, 53S[Crossref]
  • [6] Lutolf M.P., Hubbell J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue, Nat. Biotechnol. 2005, 23 (1), 47[Crossref]
  • [7] Fischbach C., Mooney D.J., Polymers for pro- and anti-angiogenic therapy, Biomaterials, 2007, 28 (12), 2069[Crossref][WoS]
  • [8] Ding X., Yang Ch., Lim T.P., Hsu L.Y., Engler A.C., Hedrick J.L., Yang Y.-Y., Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers, Biomaterials, 2012, 33, 6593[Crossref][WoS]
  • [9] Mrad O., Saunier J., Chodur C.A., Rosilio V., Agnely F., Aubert P., Vigneron J., Etcheberry A., Yagoubi N., A comparison of plasma and electron beam-sterilization of PU catheters, Radiation Physics and Chemistry, 2010, 79, 93
  • [10] N. Aumsuwan, S.-H. Ye, W.R. Wagner, M.W. Urban, Covalent attachment of multilayers on poly(tetrafluoroethylene) surfaces, Langmuir 2011, 27, 11106[Crossref][WoS]
  • [11] Wang Z.G., Wan L.S., Xu Z.K., Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: an overview, J. Membr. Sci., 2007, 304, 8[WoS]
  • [12] Zhu Y.B., Gao C.Y., Liu X.Y., Shen J.C., Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells, Biomacromolecules, 2002, 3, 1312[Crossref]
  • [13] Noh J.H., Baik H.K., Noh I., Park J.-C., Lee I.-S., Surface modification of polytetrafluoroethylene using atmospheric pressure jet for medical application, Surf. Coat. Technol., 2007, 201, 5097[WoS]
  • [14] Fang Z., Hao L., Yang H., Xie X., Qiu Y., Edmund K., Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air, Appl. Surf. Sci., 2009, 255, 7279[WoS]
  • [15] Kereszturi K., Tóth A., Mohai M., Bertóti I., Szépvölgyi J., Nitrogen plasma-based ion implantation of poly(tetrafluoroethylene): Effect of the main parameters on the surface properties, Appl. Surf. Sci., 2010, 256, 6385[WoS][Crossref]
  • [16] Haaf F., Sanner A., Straub F., Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses, Polymer J. 1985, 17, 143[Crossref]
  • [17] Folttmann H., Quadir A., Polyvinylpyrrolidone (PVP) One of the Most Widely UsedExcipients in Pharmaceuticals: An Overview, Drug Delivery Technol., 2008, 8, 22
  • [18] Akiyama H., Fujii K., Yamasaki O., Ono T., Iwatsuki K., Antibacterial action of several tannins against Staphylococcus aureus, J. Antimicrob. Chemother., 2011, 48, 487
  • [19] Kolodziej H., Kiderlen A. F., Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells, Phytochem., 2005, 66, 2056
  • [20] Akagawa M., Suyama K., Amine oxidase-like activity of polyphenols. Mechanism and properties, Eur. J. Biochem., 2001, 268, 1953
  • [21] Erel-Unal I., Sukhishvili S.A., Hydrogen-bonded Multilayers ofa Neutral Polymer and a Polyphenol, Macromol., 2008, 41, 3962[Crossref]
  • [22] Kozlovskaya V., Kharlampieva E., Drachuk I., Cheng D., Tsukruk V.V., Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies, Soft Matter, 2010, 6, 3596[WoS][Crossref]
  • [23] Kim B.S., Lee H., Min Y.H., Poon Z., Hammond P.T., Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery, Chem. Commun., 2009, 28, 4194[Crossref][WoS]
  • [24] D.J. Schmidt, P.T. Hammond, Electrochemically erasable hydrogen-bonded thin films, Chem. Commun., 2010, 46, 7358[WoS][Crossref]
  • [25] Šimor M., Ráhel J., Vojtek P., Brablec A., Cernák M., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716[Crossref]
  • [26] Cernák M., Cernáková L., Hudec I., Kovácik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys.J. Appl. Phys., 2009, 47, 22806[WoS][Crossref]
  • [27] Cernák M., Kovácik D., Ráhel J., Stahel P., Zahoranová A., Kubincová J., Tóth A., Cernáková L., Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing, Plasma Phys. Control. Fusion, 2011, 53, 124031[Crossref][WoS]
  • [28] Vesel A. and Mozetic M., Surface functionalization of organic materials by weakly ionized highly dissociated oxygen plasma, Journal of Physics: Conference Series, 2009, 162, 012015
  • [29] Gerenser L.J., Surface Chemistry of Plasma-Treated Polymers, in Handbook of Thin Film Process Technology, ed D A Glocker and S I Shah (IOP, Bristol), 1996
  • [30] Zhou L., Chen M., Tian L., Gian Y., Zhang Y., Release of Polyphenolic Drugs from Dynamically Bonded Layer-by-Layer Films, Appl. Mater. Interfaces, 2013, 5, 3541 [Crossref][WoS]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.