Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Optical emission spectra analysis of thermal plasma treatment of poly(vinyl chloride)

Title variants
Languages of publication
Decomposition of poly(vinyl chloride) (PVC) was investigated in radiofrequency thermal plasma in neutral, oxidative and reductive conditions. Optical emission spectroscopy (OES) was applied for the characterization of the plasma column. OES was used to identify active plasma components such as excited atoms, ions, radicals and molecules. The spectra were dominated by molecular C2, CN, OH, and CH bands, and atomic H, Ar, C, Cl and O lines. Emission intensities of main species were monitored versus various experimental parameters. The rotational-vibrational temperatures determined from different bimolecular species were considered in the range of 2000–6400 K. Solid soot samples were collected and purified to investigate the possibility of graphene formation as a by-product of the decomposition process.
Physical description
20 - 1 - 2014
30 - 5 - 2014
9 - 12 - 2014
  • [1] Saeki Y., Emura T., Technical progresses for PVC production, Prog. Poly. Sci., 2002, 27, 2055-2131[Crossref]
  • [2] Moulay S., Chemical modification of poly(vinyl chloride)-Still on the run, Prog. Poly. Sci., 2010, 35, 303-331[Crossref]
  • [3] Shadat-Shojai M, Bekhschandeh G.-R., Recycling of PVC wastes, Polym. Degrad. Stab., 2011, 96, 404-415[Crossref]
  • [4] Szarka Gy., Domján A., Szakács T., Iván B., Oil from poly(vinyl chloride): unprecedented degradative chain scission under mild thermooxidative conditionsPolym. Degrad. Stab., 2012, 97, 1787-1793[Crossref]
  • [5] Miranda R., Yang J., Roy C., Vasile C., Vacuum pyrolysis of PVC I. Kinetic study, Polym. Degrad. Stab., 1999, 64, 127-144[Crossref]
  • [6] Blazsó M., Jakab E., Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly(vinyl chloride), J. Anal. Appl. Pyrol., 1999, 49, 125-143[Crossref]
  • [7] Czégény Zs., Jakab E., Blazsó M., Thermal decomposition of polymer mixtures containing poly (vinyl chloride), Macromol. Mater. Eng., 2002, 287, 277-284
  • [8] Christmann W., Kasiske D., Klöppel K.D., Partscht H., Rotard W., Combustion of polyvinylchloride- an important source for the formation of PCDD/PCDF, Chemosphere, 1989, 19, 387-392[Crossref]
  • [9] Mohai I., Gál L., Szépvölgyi J., Gubicza J., Farkas Z., Synthesis of nanosized zinc ferrites from liquid precursors in RF thermal plasma reactor, J. Eur. Chem. Soc., 2007, 27, 941-945
  • [10] Guddeti R.R., Knight R., Grossmann E.D., Depolymerization of polyethylene using induction-coupled plasma technology, Plasma Chem. Plasma Proc., 2000, 20, 37-64[Crossref]
  • [11] Föglein K.A., Szabó P.T., Dombi A., Szépvölgyi J., Comparative study of the decomposition of CCl4 in cold and thermal plasma, Plasma Chem. Plasma. Proc., 2003, 23, 651-664[Crossref]
  • [12] Föglein K.A., Szabó P.T., Babievskaya I.Z., Szépvölgyi J., Comparative Study on the decomposition of chloroform in thermal and cold plasma, Plasma Chem. Plasma. Proc., 2005, 25, 289-302[Crossref]
  • [13] Todorovic-Markovic B., Markovic Z., Mohai I., Károly Z., Gál L., Föglein K., Szabó P.T., Szépvölgyi J., Efficient Synthesis of fullerenes in RF Thermal Plasma reactor, Chem. Phys. Lett., 2003, 378, 434-439
  • [14] Cota-Sanchez G., Souczy G., Huczko A., Lange H., Fullerenes and Nanotubes Using Carbon Black-Nickel Particles, Carbon, 2005, 43, 3153-3166
  • [15] Shahverdi A., Souczy G., Counter-current ammonia injection flow during synthesis of single-walled carbon nanotubes by induction thermal plasma, Chem. Eng. Sci., 2013, 104, 389-98[WoS][Crossref]
  • [16] Choi S.I., Nam J.S., Lee C.M., Choi S.S., Kim J.I., Park J.M., Hong S.H., High purity synthesis of carbon nanotubes by methane decomposition using an arc-jet plasma, Curr. Appl. Phys., 2006, 6, 224-229[Crossref]
  • [17] Horii N., Suzuki N., Itoh K., Kotaki T., Matsumo O., Deposition of diamond from plasma jets with chlorobenzenes as carbon source, Diam. Relat. Mater., 1997, 6, 1874-1882[Crossref]
  • [18] Aso H., Matsuoka K., Sharma A., Tomita A., Structural analysis of PVC and PFA carbons prepared at 500–1000 °C based on elemental composition, XRD, and HRTEM, Carbon, 2004, 42, 2963-2973
  • [19] Nemes L., Irle S., Spectroscopy, dynamics and molecular theory of carbon plasmas and vapours, World Scientific Publishing, Abingdon, 2009
  • [20] Al-Shboul K.F., Harilal S.S., Hassanein A., Polek M., Dynamics of C2 formation in laser-produced carbon plasma in helium environment, J. Appl. Phys., 2011, 109, 053302[Crossref][WoS]
  • [21] Nemes L., Keszler A.M., Hornkohl J.O., Parigger C.G., Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown, Appl. Opt., 2005, 44, 3661-3667[Crossref]
  • [22] Fazekas P., Bódis E., Keszler A.M., Czégény Zs., Klébert Sz., Károly Z., Szépvölgyi J., Decomposition of chlorobenzene by thermal plasma processing, Plasma Chem. Plasma. Proc., 2013, 33, 765-778[Crossref]
  • [23] Kramida. A., Ralchenko, Y., Reader J., and NIST ASD Team, NIST Atomic Spectra Database (ver. 5. 1.), 2013, http://physics,
  • [24] Luque J., Crosley D.R., LIFBASE, Database and Spectral Simulation for Diatomic Molecules, SRI International, Menlo Park, CA, USA, 1999
  • [25] Pearse R.W.B., Gaydon A.G., The identification of molecular spectra, 4th edition, Chapman and Hall, London, 1976
  • [26] Hertzberg G., Molecular Spectra and Molecular Structure, D Van Nostrand Company, Inc., New Jersey, 1950
  • [27] Wallace L., Astrophys. J. Suppl., 1962, 7, 165[Crossref]
  • [28] Bystrzejewski M., Rümmeli M.H., Gemming T., Lange H., Huczko A., Catalyst-free synthesis of onion-like carbon nanoparticles, New Carbon Mater., 2010, 25, 1-8
  • [29] Parigger C.G., Plemmons D.H., Oks E., Balmer Series H-beta measurements in a laser-induced hydrogen plasma, Appl. Opt., 2003, 42, 5992-6000[Crossref]
  • [30] King A.S., Swings P., Astrophys. J., 1945, 101, 6
  • [31] Babánková D., Civis S., Juha L., Bitter M., Cihelka J., Pfeifer M., Skála J., Bartnik A., Fiedorowicz H., Mikolajczyk J., Ryc L., Sedicová T., Optical and X-ray emission spectroscopy of high-power laser-induced dielectric breakdown in molecular gases and their mixtures, J. Phys. Chem. A, 2006, 110, 12113-12120[Crossref]
  • [32] Dean, A.J., Davidson D.F., Hanson R.K., A shock tube study of reactions of carbon atoms with hydrogen and oxygen using excimer photolysis of C3O2 and carbon atom atomic resonance absorption spectroscopy, J. Phys. Chem., 1991, 95, 183-191[Crossref]
  • [33] Baddour, R.F., Iwasyk, J.M., Reactions between elemental carbon and hydrogen at temperature above 2800 K, Ind. Eng. Chem. Process. Des. Dev. 1962, 1, 169-176[Crossref]
  • [34] Reitblat A.A., Soviet Astronomy Letters, 1980, 6, 406
  • [35] Hornkohl J.O., Parigger C.G., Lewis J.W.L., Temperature Measurements from CN Spectra in a Laser-Induced Plasma,J. Quant. Spectrosc. Radiat. Transf., 1991, 46, 405-411[Crossref]
  • [36] Parigger C.G., Plemmons D.H., Hornkohl J.O., Lewis J.W.L., Spectroscopic Temperature Measurements in a Decaying Laser-Induced Plasma using the C2 Swan System, J. Quant. Spectrosc. Radiat. Transf., 1994, 52, 707-711[Crossref]
  • [37] Parigger C.G., Hornkohl J.O., Keszler A.M., Nemes L., Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air, Appt. Opt., 2003, 42, 6192-6198[Crossref]
  • [38] Tong X., Wang H., Wang G., Wan L., Ren Z., Bai J., Bai J., Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries, J. Solid State Chem., 2011, 184, 982-989
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.