PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Spark plasma sintering of Si3N4/multilayer graphene composites

Content
Title variants
Languages of publication
EN
Abstracts
EN
Mulitlayer graphene reinforced silicon nitride composites were prepared by spark plasma sintering to investigate the effect of the graphene addition on mechanical properties. The composites contained multilayer graphene (MLG) in various (0, 1, 3 and 5 wt%) content. Significantly higher fracture toughness of
8.0 MPa m1/2 was obtained at 1% MLG content, however, on further increasing the graphene content the toughness did not increase, but dropped to the value of the monolithic silicon nitride. The maximum hardness of 18.8 MPa was also obtained at 1% MLG, while at higher MLG contents it gradually decreased.
EN
Publisher

Journal
Year
Volume
13
Issue
1
Physical description
Dates
online
1 - 12 - 2014
received
21 - 1 - 2014
accepted
29 - 5 - 2014
Contributors
author
  • Institute of Materials and Environmental Sciences, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri street 59-67., Budapest, Hungary1025
  • Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Konkoly-Thege street 29-33., Budapest, Hungary 1121
  • Institute of Materials and Environmental Sciences, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri street 59-67., Budapest, Hungary1025
  • Institute of Materials and Environmental Sciences, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri street 59-67., Budapest, Hungary1025
  • Institute of Materials and Environmental Sciences, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri street 59-67., Budapest, Hungary1025
  • Institute of Materials and Environmental Sciences, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri street 59-67., Budapest, Hungary1025
  • Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Konkoly-Thege street 29-33., Budapest, Hungary 1121
  • Research Institute of Chemical and Process Engineering, University of Pannonia, Egyetem Street 10. P.O. BOX 10, Veszprém, Hungary 8200
References
  • [1] Riley F. L., Concise Encyclopedia of Semiconducting Materials & Related Technologies, Silicon Nitride: Bulk Properties, Pergamon press, 1991
  • [2] Shen Z., Zhao Z., Peng H., Nygren M., Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening, Lett. Nat. 2002, 417, 266-269
  • [3] Kovalčíková A., Balázsi Cs., Dusza J., Tapasztó O., Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite, Ceram. Int., 2012, 28, 527-533[WoS][Crossref]
  • [4] Kothari A. K., Hu S., Xia Z., Konca E., Sheldon B. W., Enhanced fracture toughness in carbon-nanotube-reinforced amorphous silicon nitride nanocomposite coatings Acta Mater., 2012, 60, 3333- 3339[WoS]
  • [5] Calis Acikbas N., Kumar R., Kara F., Mandal H., Basub B., Influence of β-Si3N4 particle size and heat treatment on microstructural evolution of α:β-SiAlON ceramics, J. Eur. Ceram. Soc., 2011, 31, 629-635[Crossref]
  • [6] Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., et al., Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater., 2010, 22, 3906- 3924[WoS][Crossref]
  • [7] Young R. J., Kinloch I. A., Gong L., Novoselov K. S., The mechanics of graphene nanocomposites: A review, Compos. Sci. Technol., 2012, 72, 1459-1476[Crossref][WoS]
  • [8] Kuilla T., Bhadra S., Yao D. H., Kim N. H., Bose S., Lee J. H., Recent advances in graphene based polymer composites, Prog. Polym. Sci., 2010, 35, 1350-1375[Crossref][WoS]
  • [9] Liu J., Yan H., Reece M. J., Jiang K., Toughening of zirconia/alumina composites by the addition of graphene platelets J. Eur. Ceram. Soc., 2012, 32, 4185-4193[WoS][Crossref]
  • [10] Porwal H., Tatarko P., Grasso S., Khaliq J., Dlouhy I., Reece M. J., Graphene reinforced alumina nano-composites, Carbon, 2013, 64, 359- 369
  • [11] Miranzo P., Ramirez C., Román-Manso B., Garzón L., Gutiérrez H. R., M. Terrones, et al., In situ processing of electrically conducting graphene/ SiC nanocomposites, J. Eur. Ceram. Soc. 2013, 33, 1665-1674[Crossref]
  • [12] Fan Y., Wang L., Lib J., Lia J., Sun S., Chen L., et al.,Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon, 2010, 48, 1743- 1749
  • [13] Ramirez C., Figueiredo F. M., Miranzo P., Poza P., Osendi M. I., Anisotropic graphene nanoplatelet/silicon nitride composites with high electrical conductivity, Carbon, 2012, 50, 3607- 3615
  • [14] Dusza J., Morgiel J., Duszová A., Kvetková L., Nosko M., Kun P., et al., Microstructure and fracture toughness of Si3N4 + graphene platelet composites J. Eur. Ceram. Soc., 2012, 32, 3389-3397[Crossref]
  • [15] Kvetková L., Duszova A., Hvizdos P., Dusza J., Kun P., Balázsi C., Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites, Script. Mater, 2012, 66, 793- 796[Crossref]
  • [16] Tapasztó O., Kun P., Wéber F., Gergely G., Balázsi K., Pfeifer J., et al., Silicon nitride based nanocomposites produced by two different sintering methods, Ceram. Int., 2011, 37, 3457-3461[Crossref][WoS]
  • [17] Ramirez C., Miranzo P., Belmontea M., Osendia M. I., Poza P., Vega-Diaz S. M., et al., Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets, J. Eur. Ceram. Soc. 2014, 34, 161-169[WoS][Crossref]
  • [18] Belmonte M., Gonzalez- Julian J., Miranzo P., Osendi M. I., Spark Plasma Sintering: a powerful tool to develop new silicon nitride-based materials, J. Eur. Ceram. Soc., 2010, 30, 2937-2946[Crossref][WoS]
  • [19] Tokita M., Trends in advanced SPS systems and FGM technology, Proceedings of NEDO International Symposium on Functional Graded Materials (21-22 October, 1999, Tokyo, Japan)
  • [20] Kun P., Wéber F., Balázsi Cs., Preparation and examination of multilayer graphene nanosheets by exfoliation of graphite in high efficient attritor mill, Cent. Eur. J. Chem., 2011, 9, 47- 51[WoS]
  • [21] Knieke C., Berger A., Voigt M., Klupp Taylor R. N., Röhrl J., Peukert W., Carbon, Scalable production of graphene sheets by mechanical delamination, 2010, 48, 3196- 3204
  • [22] Shetty D. K., Wright I. G., Mincer P. N., Clauser A. H., Indentation fracture of WC-Co cermets J. Mater. Sci., 1985, 20,1873-1882[Crossref]
  • [23] H. Porwal, S. Grasso, M. J. Reece, Review of graphene–ceramic matrix composites, Adv. Appl. Ceram., 2013, 112, 443- 454[WoS][Crossref]
  • [24] Walker L. S., Marotto V. R., Mohammad A. R., Koratkar N., Corral E. L., Toughening in graphene ceramic composites, ACS Nano, 2011, 5, 3182- 3190[WoS][Crossref]
  • [25] Tapasztó O., Tapasztó L., Markó M., Kern F., Gadow R., Balázsi Cs., Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites, Chem. Phys. Lett. , 2011, 511, 340- 343 [WoS]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0064
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.