PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 13 | 1 |
Article title

Temperature stability of mercury compounds
in solid substrates

Content
Title variants
Languages of publication
EN
Abstracts
EN
Publisher
Journal
Year
Volume
13
Issue
1
Physical description
Dates
received
10 - 2 - 2014
online
26 - 11 - 2014
accepted
28 - 8 - 2014
Contributors
author
  • Esotech, d.d., Preloška 1, 3320 Velenje, Slovenia
author
  • International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
  • Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
author
  • International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
References
  • [1] UNEP, Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, 2013a, http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf
  • [2] UNEP, Report of the intergovernmental negotiating committee to prepare a global legally binding instrument on mercury on the work of its fifth session, 2013b, http://www.unep.org/chemicalsandwaste/Portals/9/Mercury/Documents/INC5/5_7_REPORT_ADVANCE.doc
  • [3] Galbreath, K.C., Zygarlicke, C.J. Mercury transformations in coal combustion flue gas, Fuel. Process. Technol., 2000, 65-66 and 289–310.[Crossref]
  • [4] Biester, H., Scholz, C., Determination of Mercury Binding Forms in Contaminated Soils: Mercury Pyrolysis versus Sequential Extractions, Environ. Sci. Technol., 1997, 31, 233–239.[Crossref]
  • [5] Biester, H., Gosar, M., Muller, G., Mercury speciation in tailings of the Idrija mercury mine, J. Geochem. Exp., 1999, 65, 195–204.
  • [6] Hojdová, M., Navrátil, T., Rohovec, J., Peníek, V., Grygar. T., Mercury distribution and speciation in soils affected by historic mercury mining, Water Air Soil Pollut., 2009, 200, 89–99.
  • [7] Higueras, P., Oyarzun, R., Biester, H., Lillo, J., Lorenzo, S., A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain, J. Geochem. Exp., 2003, 80, 95–104.
  • [8] Kim, C.S., Rytuba, J.J., Brown, G.E., Geological and anthropogenic factors influencing mercury speciation in mine wastes: an EXAFS spectroscopy study, Appl. Geochem., 2004, 19, 379–393.[Crossref]
  • [9] Lide, D.R., CRC Handbook of Chemistry and Physics - 90th Edition - CD-ROM Version 2010, 2010, 725–726.
  • [10] Schroeder, W.H., Munthe, J., Atmospheric mercury-An overview, Atmos. Environ., 1998, 32, 809–822.[Crossref]
  • [11] Tariq, S.A., Hill, J.O., Thermal analysis of Mercury(I) sulfate and Mercury(II) sulphate, J. Therm. Anal., 1981, 21, 277–281.[Crossref]
  • [12] Shuvaeva, O.V., Gustaytis, M.A., Anoshin, G.N., Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection, Anal. Chim. Acta., 2008, 621(Pt 2), 148–154.[WoS]
  • [13] Lopez-Anton, M.A., Yuan, Y., Perry, R., Maroto-Valer, M.M., Analysis of mercury species present during coal combustion by thermal desorption, Fuel, 2010, 89, 629–634.[WoS][Crossref]
  • [14] Rallo, M., Lopez-Anton, M.A., Perry, R., Maroto-Valer, M.M., Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition, Fuel, 2010, 89, 2157–2059.[WoS][Crossref]
  • [15] Luo, G., Yao, H., Xu, M., Gupta, R., Xu, Z., Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis, Proceed. Combust. Inst., 2011, 33, 2763–2769.[Crossref]
  • [16] Bollen, A., Wenke, A., Biester, H., Mercury speciation analyses in HgCl2–contaminated soils and groundwater-Implications for risk assessment and remediation strategies, Water. Res., 2008, 42, 91–100.
  • [17] Iwashita, A., Tanamachi, S., Nakajima, T., Takanashi, H.,Ohki, A., Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury, Fuel, 2004, 83, 631–638.[Crossref]
  • [18] Wu, S., Uddin, M.A., Nagano, S., Ozaki, M., Sasaoka, E., Fundamental Study on Decomposition Characteristics of Mercury Compounds over Solid Powder by Temperature-Programmed Decomposition Desorption Mass Spectrometry, Energy Fuels, 2011, 25, 144–153.[Crossref][WoS]
  • [19] Coufalík, P., Krásenský, P., Dosbaba, M., Komárek, J., Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia, Cent. Eur. J. Chem., 2012, 10 (5), 1565–1573.[WoS]
  • [20] Coufalík, P., Zvěřina, O., Komárek, J., Determination of mercury species using thermal desorption analysis in AAS, Chem. Pap., 2013, 68 (4), 427–434.[WoS]
  • [21] Akagi, H., Nishimura, H., Speciation of mercury in the environment, In: Suzuki, T., Imura, N., Clarkson, T.W. (Eds.), Advances in mercury toxicology. Plenum Press. 1991
  • [22] Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N.,Stroganov, A., Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples, Fuel Process. Technol., 2004, 85, 473–485.
  • [23] NIST Mass Spectrometry Data Center, Mercury(II) chloride - Mass spectrum (electron ionization), 2013, http://webbook.nist.gov/cgi/cbook.cgi?Formula=hgcl2&NoIon=on&Units=SI&cMS=on
  • [24] Wendlandt, W.W., Thermal Properties of Inorganic Compounds. Hg(I) Hg(II) Compounds, Thermochim. Acta, 1974, 10, 101–107.[Crossref]
  • [25] L´vov, B., Kinetics and mechanisms of thermal decomposition of mercuric oxide, Thermochim. Acta, 1999, 333, 21–26.
  • [26] Gmelin, Hg Compounds with O, Gmelins Handbuch, Mercury. Springer-Verlag GmbH. 1965, 34, 17–60.
  • [27] Owens, T.M., Wu, C., Biswas, P., An Equilibrium Analysis for Reaction of Metal Compounds with Sorbents in High Temperature Systems, Chem. Eng. Comm., 1995, 133, 31–52.
  • [28] Schreiber, R.J.J., Kellett, C.D., Inherent Mercury Controls Within the Portland Cement Kiln System, Research & Development Information. Skokie, Illinois: Portland Cement Association. Serial No 2841, 2005.
  • [29] Zheng, Y., Jensen, A.D., Windelin, C., Jensen, F., Review of technologies for mercury removal from flue gas from cement production processes, Prog. Ener. Comb. Sci., 2012, 38, 599–629.[Crossref]
  • [30] Leckey, J.H., Nulf, L.E., Thermal decomposition of mercuric sulfide. Chemistry and Chemical Engineering Department - Development Organization. Oak Ridge Y-12 Plant. Tennessee: Martin Marietta Energy Systems, Inc. U. S. Department of Energy (Online), October 28, 1994, http://www.osti.gov/scitech/servlets/purl/41313
  • [31] Collins, L.W., Gibson, E.K., Wendlandt, W.W., Thermal properties of inorganic compounds; evolved studies of some Mercury(I) and (II) compounds, Thermochim. Acta, 1975, 11, 177–185.[Crossref]
  • [32] Cotton, F.A., Wilkinson, G., Advanced inorganic chemistry:A comprehensive text. 3rd ed, John Wiley & Sons Inc., 1972, 17–18.
  • [33] Bebout, D.C., Mercury: Inorganic and coordination chemistry, In: King R.B., Encyclopaedia of inorganic chemistry. 2nd ed. Wily, 2005, 6–8.
  • [34] Zuckerman, J.J., Hagen, A.P., Formation of the halogen (Cu, Ag, Au) or (Zn, Cd, Hg) metal bond, In: Inorganic reactions and methods, Volume 4. New York: VCH publishers inc., 1991, 144–148.
  • [35] Kozin, L.F., Hansen, S.C., Mercury Handbook: Chemistry, application and environmental impact, RSC Publishing, 2013, 87–89.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0051
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.