Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Electron heating modes and frequency coupling effects in dual-frequency capacitive CF4 plasmas

Content

Title variants

Languages of publication

EN

Abstracts

EN
Two types of capacitive dual-frequency discharges, used in plasma processing applications to achieve the separate control of the ion flux, Гi, and the mean ion energy, <Ei>, at the electrodes, operated in CF4, are investigated by particle-in-cell simulations: (i) In classical dual-frequency discharges, driven by significantly different frequencies (1.937 MHz + 27.12 MHz), <Ei> and Гi are controlled by the voltage amplitudes of the low-frequency and high-frequeny components, ΦLF and ΦHF, respectively. (ii) In electrically asymmetric (EA) discharges, operated at a fundamental frequency and its second harmonic
(13.56 MHz + 27.12 MHz), ΦLF and ΦHF control Гi, whereas the phase shift between the driving frequencies, θ, is varied to adjust <Ei>. We focus on the effect of changing the control parameter for <Ei> on the electron heating and ionization dynamics and on Гi. We find that in both types of dual-frequency strongly electronegative discharges, changing the control parameter results in a complex effect on the electron heating and ionization dynamics: in classical dual-frequency discharges, besides the frequency coupling affecting the sheath expansion heating, additional frequency coupling mechanisms influence the electron heating in the plasma bulk and at the collapsing sheath edge; in EA dual-frequency discharges the electron heating in the bulk results in asymmetric ionization dynamics for values of θ around 45°, i.e., in the case of a symmetric applied

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

accepted
3 - 4 - 2014
received
31 - 1 - 2014
online
9 - 12 - 2014

Contributors

author
  • Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences,
    1121 Budapest, Hungary
  • Department of Physics, West Virginia University, Morgantown, WV 26506, USA
  • Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences,
    1121 Budapest, Hungary
  • Department of Physics, West Virginia University, Morgantown, WV 26506, USA

References

  • [1] Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Materials Processing, 2nd edition, Wiley-Interscience, Hoboken, NJ, 2005
  • [2] Makabe T., Petrović Z.Lj., Plasma Electronics: Applications in Microelectronic Device Fabrication, Taylor and Francis, New York, 2006
  • [3] Georgieva V., Bogaerts A., Gijbels R., Numerical investigation of ion-energy-distribution functions in single and dual frequency capacitively coupled plasma reactors, Phys. Rev. E, 2004, 69, 026406[Crossref]
  • [4] Georgieva V., Bogaerts A., Numerical simulation of dual frequency etching reactors: Influence of the external process parameters on the plasma characteristics, J. Appl. Phys., 2005, 98, 023308[Crossref]
  • [5] Georgieva V., Bogaerts A., Plasma characteristics of anAr/CF4/N2 discharge in an asymmetric dual frequency reactor: numerical investigation by a PIC/MC model, Plasma Sources Sci. Technol., 2006, 15, 368
  • [6] Donkó Z., Petrović Z.Lj., Analysis of a Capacitively Coupled Dual-Frequency CF4 Discharge, Japan. J. Appl. Phys., 2006, 45, 8151[Crossref]
  • [7] Denpoh K., Nanbu K., Self-consistent Particle Simulation of Radio-Frequency CF4 Discharge with Implementation of All Ion-Neutral Reactive Collisions, J. Vac. Sci. Technol. A, 1998, 16, 1201-1206[Crossref]
  • [8] Denpoh K., Nanbu K., Self-Consistent Particle Simulation of Radio Frequency CF4 Discharge: Effect of Gas Pressure, Japan. J. Appl. Phys., 39, 2804-2808[Crossref]
  • [9] Booth J.P., Corr C.S., Curley G.A., Jolly J., Guillon J., Foldes T., Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy, Appl. Phys. Lett., 2006, 88, 151502[Crossref]
  • [10] Cunge G., Chabert P., Booth J.P., Absolute fluorine atom concentrations in fluorocarbon plasmas determined from CF2 loss kinetics, J. Appl. Phys., 2001, 89, 7750[Crossref]
  • [11] Booth J.P., Optical and Electrical Diagnostics of Fluorocarbon Plasma Etching Processes, Plasma Sources Sci. Technol., 1999, 8, 249
  • [12] Booth J.P, Cunge G., Chabert P., Sadeghi N., CFx radical production and loss in a CF4 reactive ion etching plasma: fluorine rich conditions, J. Appl.Phys., 1999, 85, 3097[Crossref]
  • [13] Haverlag M., Kono A., Passchier D., Kroesen G.M.W., Goedheer W.J., de Hoog F.J., Measurements of negative ion densities in 13.56‐MHz rf plasmas of CF4, C2F6, CHF3, and C3F8 using microwave resonance and the photodetachment effect, J. Appl. Phys., 1991, 70, 3472
  • [14] Sobolewski M.A., Wang Y., Goyette A., Measurements and modeling of ion energy distributions in high-density radio-frequency biased CF4 discharges, J. Appl. Phys., 2002, 91, 6303-6314[Crossref]
  • [15] Proshina O.V., Rakhimova T.V., Rakhimov A.T., Voloshin D.G., Two modes of capacitively coupled rf discharge in CF4, Plasma Sources Sci. Technol., 2010, 19, 065013
  • [16] Schulze J., Derzsi A., Donkó Z., Electron heating and the electrical asymmetry effect in dual-frequency capacitive CF4 discharges, Plasma Sources Sci. Technol., 2011, 20, 045008
  • [17] Schulze J., Derzsi A., Dittmann K., Hemke T., Meichsner J., Donkó Z., Ionization by Drift and Ambipolar Electric Fields in Electronegative Capacitive Radio Frequency Plasmas, Phys. Rev. Lett., 2011, 107, 275001[Crossref]
  • [18] Derzsi A., Donkó Z., Schulze J., Coupling effects of driving frequencies on the electron heating in electronegative capacitive dual-frequency plasmas, J. Phys. D: Appl. Phys., 2013, 46, 482001[Crossref]
  • [19] Teichmann T., Küllig C., Dittmann K., Matyash K., Schneider R., Meichsner J., Particle-In-Cell simulation of laser photodetachment in capacitively coupled radio frequency oxygen discharges, Phys. Plasmas, 2013, 20, 113509[Crossref]
  • [20] Dittmann K., Küllig C., Meichsner J, Electron and negative ion dynamics in electronegative cc-rf plasmas, Plasma Phys. Control. Fusion, 2012, 54, 124038[Crossref]
  • [21] Belenguer P., Boeuf J.P., Transition between different regimes of rf glow discharges, Phys. Rev. A, 1990, 41, 4447[Crossref]
  • [22] Vender D., Boswell R., Electron–sheath interaction in capacitive radio‐frequency plasmas, J. Vac. Sci. Technol. A, 1992, 10, 1331[Crossref]
  • [23] Schulze J., Heil B.G., Luggenhölscher D., Mussenbrock T., Brinkmann R.P., Czarnetzki U., Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures, J. Phys. D: Appl. Phys., 2008, 41, 042003[Crossref]
  • [24] Turner M.M., Hopkins M.B., Anomalous sheath heating in a low pressure rf discharge in nitrogen, Phys. Rev. Lett., 1992, 69, 3511[Crossref]
  • [25] Czarnetzki U., Luggenhölscher D., Döbele H.F., Space and time resolved electric field measurements in helium and hydrogen RF-discharges, Plasma Sources Sci. Technol., 1999, 8, 230
  • [26] Schulze J., Donkó Z., Heil B.G., Luggenhölscher D., Mussenbrock T., Brinkmann R.P., et al., Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures, J. Phys. D: Appl. Phys., 2008, 41, 105214[Crossref]
  • [27] Hemke T., Eremin D., Mussenbrock T., Derzsi A., Donkó Z., Dittmann K., et al., Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas, Plasma Sources Sci. Technol., 2013, 22, 015012
  • [28] Belenguer P., Blondeau J.P, Boufendi L., Toogood M, Plain A., Bouchoule A, et al., Phys. Rev. A, 1992, 46, 7923[Crossref]
  • [29] Schüngel E., Mohr S., Iwashita S., Schulze J., Czarnetzki U., The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges, J. Phys. D: Appl. Phys., 2013, 46, 175205[Crossref]
  • [30] Killer E., Bandelow G., Matyash K., Schneider R., Melzer A., Observation of Ω Mode Electron Heating in dusty argon radio frequency discharges, Phys. Plasmas, 2013, 20, 083704[Crossref]
  • [31] Shibata M., Nakano N., Makabe T., O2 rf discharge structure in parallel plates reactor at 13.56 MHz for material processing,J. Appl. Phys., 1995, 77, 6181
  • [32] Liu Y.X., Zhang Q.Z., Liu J., Song Y.H., Bogaerts A., Wang Y.N., Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas, Appl. Phys. Lett., 2012, 101, 114101[Crossref]
  • [33] Liu Y.X., Zhang Q.Z., Liu J., Song Y.H., Bogaerts A., Wang Y.N., Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges, Plasma Sources Sci. Technol., 2013, 22, 025012
  • [34] Yan M., Bogaerts A., Goedheer W.J., Gijbels R., Electron energy distribution function in capacitively coupled RF discharges: difference between electropositive Ar and electronegative SiH4 discharges, Plasma Sources Sci. Technol., 2000, 9, 583
  • [35] Jiang W., Xu X., Dai Z.L., Wang Y.N., Heating mechanisms and particle flow balancing of capacitively coupled plasmas driven by combined dc/rf sources, Phys. Plasmas, 2008, 15, 033502[Crossref]
  • [36] Wang S.B., Wendt A.E., Control of ion energy distribution at substrates during plasma processing, J. Appl. Phys., 2000, 88, 643[Crossref]
  • [37] Qin X.V., Ting Y.H., Wendt A.E., Tailored ion energy distributions at an rf-biased plasma electrode, Plasma Sources Sci. Technol., 2010, 19, 065014
  • [38] Rauf S., Kushner M.J., Nonlinear dynamics of radio frequency plasma processing reactors powered by multifrequency sources, IEEE Trans. Plasma Sci., 1999, 27, 1329-1338[Crossref]
  • [39] Schulze J., Schüngel E., Czarnetzki U., Coupling effects in inductive discharges with radio frequency substrate biasing, Appl. Phys. Lett., 2012, 100, 024102[Crossref]
  • [40] Lee H.C., Lee M.H., Chung C.W., Effects of rf-bias power on plasma parameters in a low gas pressure inductively coupled plasma, Appl. Phys. Lett., 2010, 96, 071501[Crossref]
  • [41] Lee H.C., Chung C.W., Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge, Appl. Phys. Lett., 2012, 101, 244104[Crossref]
  • [42] Boyle P.C., Ellingboe A.R., Turner M.M., Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices, J. Phys. D: Appl. Phys., 2004, 37, 697[Crossref]
  • [43] Kitajima T., Takeo Y., Petrović Z.Lj., Makabe T., Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma, Appl. Phys. Lett., 2000, 77, 489[Crossref]
  • [44] Denda T., Miyoshi Y., Komukai Y., Goto T., Petrović Z.Lj., Makabe T., Functional separation in two frequency operation of an inductively coupled plasma, J. Appl. Phys., 2004, 95, 870[Crossref]
  • [45] Lee J.K., Manuilenko O.V., Babaeva N.Y., Kim H.C., Shon J.W., Ion energy distribution control in single and dual frequency capacitive plasma sources, Plasma Sources Sci. Technol., 2005, 14, 89
  • [46] Gans T., Schulze J., O’Connell D., Czarnetzki U., Faulkner R., Ellingboe A.R. et al., Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas, Appl. Phys. Lett., 2006, 89, 261502[Crossref]
  • [47] Turner M.M., Chabert P., Collisionless Heating in Capacitive Discharges Enhanced by Dual-Frequency Excitation, Phys. Rev. Lett., 2006, 96, 205001[Crossref]
  • [48] Schulze J., Gans T., O’Connell D., Czarnetzki U., Ellingboe A.R., Turner M.M., Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge, J. Phys. D: Appl. Phys., 2007, 40, 7008[Crossref]
  • [49] Donkó Z., In: J. Matuska, S. Matejcik, J.D. Skalny (Eds.), Modeling of Dual-Frequency Capacitive Discharges, Proceedings of Symposium of Application of Plasma Processes (20–25 January 2007, Podbanske, Slovakia), 2007, IL 02 21–24
  • [50] Donkó Z., Schulze J., Hartmann P., Korolov I., Czarnetzki U., Schüngel E., The effect of secondary electrons on the separate control of ion energy and flux in dual-frequency capacitively coupled radio frequency discharges, Appl. Phys. Lett., 2010, 97, 081501[Crossref]
  • [51] Booth J.P., Curley G., Marić D., Chabert P., Dual-frequency capacitive radiofrequency discharges: effect of low-frequency power on electron density and ion flux, Plasma Sources Sci. Technol., 2010, 19, 015005
  • [52] Schulze J., Donkó Z., Schüngel E., Czarnetzki U., Secondary electrons in dual-frequency capacitive radio frequency discharges, Plasma Sources Sci. Technol., 2011, 20, 045007
  • [53] Heil B.G., Schulze J., Mussenbrock T., Brinkmann R.P.,Czarnetzki U., Numerical Modeling of Electron Beams Accelerated by the Radio Frequency Boundary Sheath, IEEE Trans. Plasma Sci., 2008, 36, 1404-1405[Crossref]
  • [54] Heil B.G., Czarnetzki U., Brinkmann R.P., Mussenbrock T., On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric, J. Phys. D: Appl. Phys., 2008, 41, 165202[Crossref]
  • [55] Donkó Z., Schulze J., Heil B.G., Czarnetzki U., PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect, J. Phys. D: Appl. Phys., 2008, 42, 025205
  • [56] Czarnetzki U., Heil B.G., Schulze J., Donkó Z., Mussenbrock T., Brinkmann R.P., The Electrical Asymmetry Effect - A novel and simple method for separate control of ion energy and flux in capacitively coupled RF discharges, J. Phys. Conf. Ser., 2009, 162, 012010[Crossref]
  • [57] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., The electrical asymmetry effect in capacitively coupled radio frequency discharges – measurements of dc self bias, ion energy and ion flux, J. Phys. D: Appl. Phys., 2009, 42, 092005[Crossref]
  • [58] Donkó Z., Schulze J., Czarnetzki U., Luggenhölscher D., Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges, Appl. Phys. Lett., 2009, 94, 131501[Crossref]
  • [59] Longo S., Diomede P., Modeling of Capacitively Coupled RF Plasmas in H2, Plasma Process. Polym., 2009, 6, 370-379[Crossref]
  • [60] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., Optimization of the electrical asymmetry effect in dual-frequency capacitively coupled radio frequency discharges: Experiment, simulation, and model, J. Appl. Phys., 2009, 106, 063307[Crossref]
  • [61] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., Excitation dynamics in electrically asymmetric capacitively coupled radio frequency discharges: experiment, simulation, and model, Plasma Sources Sci. Technol., 2010, 19, 045028
  • [62] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., Charge dynamics in capacitively coupled radio frequency discharges,J. Phys. D: Appl. Phys., 2010, 43, 225201[Crossref]
  • [63] Zhang Q.Z., Jiang W.J., Hou L.J., Wang Y.N., Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge, J. Appl. Phys., 2011, 109, 013308[Crossref]
  • [64] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges, Plasma Sources Sci. Technol., 2011, 20, 015017
  • [65] Czarnetzki U., Schulze J., Schüngel E., Donkó Z., The electrical asymmetry effect in capacitively coupled radio-frequency discharges, Plasma Sources Sci. Technol., 2011, 20, 024010
  • [66] Bienholz S., Stymoll T., Awakowitz P., On the electrical asymmetry effect in large area multiple frequency capacitively coupled plasmas, J. Phys. D: Appl. Phys., 2014, 47, 065201[Crossref]
  • [67] Lafleur T., Delattre P.A., Johnson E.V., Booth J.P., Separate control of the ion flux and ion energy in capacitively coupled radio-frequency discharges using voltage waveform tailoring, Appl. Phys. Lett., 2012, 101, 124104[Crossref]
  • [68] Lafleur T., Booth J.P., Control of the ion flux and ion energy in CCP discharges using non-sinusoidal voltage waveforms, J. Phys. D, 2012, 45, 395203
  • [69] Lafleur T., Boswell R. W., Booth J.P., Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms, Appl. Phys. Lett., 2012, 100, 194101[Crossref]
  • [70] Delattre P.A., Lafleur T., Johnson E., Booth J.P., Radio-frequency capacitively coupled plasmas excited by tailored voltage waveforms: comparison of experiment and particle-in-cell simulations, J. Phys. D, 2013, 46, 235201
  • [71] Kollath R., In: S. Flugge (Ed.), Encyclopedia of Physics, vol. XXI, Springer, Berlin, 1956
  • [72] Kurihara M., Petrović Z.Lj., Makabe T., Transport coefficients and scattering cross-sections for plasma modelling in CF4-Ar mixtures: a swarm analysis, J. Phys. D: Appl. Phys., 2000, 33, 2146[Crossref]
  • [73] Dujko S., Raspopovic Z.M., Petrović Z.Lj., Monte Carlo studies of electron transport in crossed electric and magnetic fields in CF4, J. Phys. D: Appl. Phys., 2005, 38, 2952[Crossref]
  • [74] Bonham R.A., Electron Impact Cross Section Data for Carbon Tetrafluoride, Japan. J. Appl. Phys., 1994, 33, 4157[Crossref]
  • [75] Nanbu K., Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases, IEEE Trans. Plasma Sci., 2000, 28, 971-990[Crossref]
  • [76] Nanbu K., Kitatani Y., An ion-neutral species collision model for particle simulation of glow discharge, J. Phys. D: Appl. Phys., 1995, 28, 324[Crossref]
  • [77] Nanbu K., Denpoh K., Monte Carlo Collision Simulation of Positive-Negative Ion Recombination for a Given Rate Constant, J. Phys. Soc. Japan, 1997, 67, 1288-1290

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_chem-2015-0044
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.