Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Atmospheric pressure glow discharge in air used for ethanol conversion: experiment and modelling

Title variants
Languages of publication
Complex theoretical and experimental investigation of ethanol into syngas conversion assisted by DC atmospheric pressure discharge with plasma cathode is presented. Infrared absorption spectroscopy together with the equation for the conservation of the number of atoms at the inlet and outlet of the reactor are used to determine the composition of syngas, the main components of which are hydrogen, carbon monoxide, methane and acetylene. It is shown that the plasma-chemical reactor enables efficient (over 90%) ethanol into syngas conversion with an output of 2 L min-1 and at energy costs of about 3 electron-volts per one hydrogen molecule. Numerical modeling of conversion kinetics at discharge conditions was performed assuming thermal nature of the process. Experimental and calculated data are in good agreement.

Physical description
17 - 11 - 2014
30 - 1 - 2014
30 - 5 - 2014
  • B.I. Stepanov Institute of Physics of NAS of Belarus220072 Minsk, Belarus
  • B.I. Stepanov Institute of Physics of NAS of Belarus220072 Minsk, Belarus
  • B.I. Stepanov Institute of Physics of NAS of Belarus220072 Minsk, Belarus
  • Private R&D Enterprise «Advanced Research & Technologies», 223058 Leskovka, Belarus
  • Private R&D Enterprise «Advanced Research & Technologies», 223058 Leskovka, Belarus
  • [1] Migun A.N., Chernukho A.P., Zhdanok S.A., J. Eng. Phys. Thermophys. 79, 651 (2006)[Crossref]
  • [2] Conte E., Boulouchos K., SAE Tech. Pap. 2004-01-0972 (2004)
  • [3] Bromberg L., Cohn D.R., Rabinovich A., Heywood J., Int. J. Hydrogen Energ. 26, 1115 (2001)[Crossref]
  • [4] Isherwood K., Linna J., Loftus P., SAE Tech. Pap. 980939 (1998)
  • [5] Green J. et al., SAE Tech. Pap. 2000-01-2206 (2000)
  • [6] Petitpasa G., Rolliera J.-D., Darmonb A., Gonzalez-Aguilara J., Metkemeijera R., Fulcheria L., Int. J. Hydrogen Energ. 32, 2848 (2007)[Crossref]
  • [7] Yukhymenko V.V., Verovchuk M.O., Olshewskii S., Chernyak V.Ya., Zrazhevskij V.A., Demchina V.P., et al., Probl. At. Sci. Tech.: Plasma Phys. 15, 128 (2009)
  • [8] Zhdanok S.A., Krauklis A.V., Samtsov P.P., Suvorov A.V., J. Eng. Phys. Thermophys. 79, 1051 (2006)[Crossref]
  • [9] Tatarova E., Bundaleska N., Dias F.M., Tsyganov D., Saavedra R., Ferreira C.M., Plasma Sources Sci. T. 22, 065001 (2013)[Crossref]
  • [10] Akishev Yu., Grushin M., Kochetov I., Karal’nik V., Napartovich A., Trushkin N., Plasma Sources Sci. T. 14, S18 (2005)
  • [11] Jasinski M., Dors M., Mizeraczyk J., Eur. Phys. J. D 54 179 (2009)
  • [12] Arkhipenko V.I., Kirillov A.A., Callegari T., Safronau Y.A., Simonchik L.V., IEEE T. Plasma Sci. 37, 740 (2009)[Crossref]
  • [13] Arkhipenko V.I., Callegari Th., Safronau Ya.A., Simonchik L.V., IEEE T. Plasma Sci. 37, 1297 (2009)[Crossref]
  • [14] Chernukho A.P., Migun A.N., Zhdanok S.A., Rostaing J.C., Perrin J., J. Eng. Phys. Thermophys. 78, 394 (2005)[Crossref]
  • [15] Konnov A., 28-th Symposium (Int.) on Combustion, Edinburgh, Abstr. Symp. Pap. p. 317 (2000)
  • [16] Arkhipenko V.I., Kirillov A.A., Safronau A., Simonchik L.V., Eur. Phys. J. D 60, 455 (2010)
  • [17] Arkhipenko V.I., Zgirouski S.M., Karoza A.G., Kirillov A.A., Simonchik L.V., J. Appl. Spectrosc. 80, 99 (2013)[Crossref]
  • [18] Bretzlaff R.S., Bahder T.B., Revue Phys. Appl. 21, 833 (1986)
  • [19] Seymour E.F.W., Cotts R.M., Williams W.D., Phys. Rev. Lett. 35, 165 (1975)[Crossref]
  • [20] Rothman L.S. et al., JQSRT, 2013, 130, 4
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.