Preferences help
enabled [disable] Abstract
Number of results
2015 | 13 | 1 |
Article title

Synthesis of bio-active titanium oxide coatings stimulated by electron-beam plasma

Title variants
Languages of publication
Advantages of the electron-beam plasma (EBP) for production of bioactive titanium oxide coatings were experimentally studied. The coatings were synthesized in EBP of oxygen on the surface of plane titanium substrates. A number of analytical techniques were used to characterize morphology, chemical composition, and structure of the synthesized titanium oxide. The analysis showed the titanium oxide (IV) in the rutile form to predominate in the coatings composition. The samples with plasmachemically synthesized TiO2-coatings were more hydrophilic than untreated titanium. The effect was stable during two weeks and then the degradation of the wettability began. The EBP-stimulated TiO2 synthesis improved the hydroxyapatite formation on the surface of plane titanium substrates. The EBP-stimulated TiO2 synthesis is promising technique to produce bioactive coatings on the surface of titanium medical dental and bone implants. The computer simulation of plasma-surface interaction was carried out to predict the plasma composition, to find the spatial distribution of the sample temperature, and to calculate the flows of the chemically active plasma particles bombarding the tube wall. The flows of atomic and singlet oxygen were found to be the most intensive and, therefore, these particles are likely to be responsible for the formation of the biocompatible TiO2-coaings.
Physical description
17 - 11 - 2014
17 - 3 - 2014
29 - 12 - 2013
  • Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
  • Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
  • Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
  • Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
  • [1] Park J.B., Lakes R.S., Biomaterials an Introduction, Plenum Press, New York, 1992
  • [2] Lin F.H., Hsu Y.S., Lin S.H., Chen T.M., Mater. Chem. Phys., 2004, 87, 24[Crossref]
  • [3] Massaro C., Rotolo P., De Riccardis F., Milella E., Napoli A., Wieland M., et al., J. Mater. Sci. Mater. Med., 2002, 13, 535[Crossref]
  • [4] Kim H.W., Kim H.E., Salih V., Knowles J.C., J. Biomed. Mater. Res. B Appl. Biomater., 2004, 72B, 1
  • [5] Park J.B., Kim Y.S., Lee G., Yun B.G., Kim C.H., J. Tissue. Eng. Regen. Med., 2013, 10, 115[Crossref]
  • [6] Dudek A., Arch. Metall. Mater., 2011, 56, 135
  • [7] Boyd A.R., Burke G.A., Duffy H., Holmberg M., O’Kane C., Meenan B.J., Kingshott P., J. Mater. Sci. Mater. Med., 2011, 22, 71[Crossref]
  • [8] Shtansky D.V., Kiryukhantsev-Korneev P.V., Bashkova I.A., Sheveiko A.N., Levashov E.A., Int. J. Refract. Met. Hard Mater., 2010, 28, 32[Crossref]
  • [9] Katayama H., Katto M., Nakayama T., Surf. Coat.Technol., 2009, 204, 135
  • [10] Roy M., Balla V.K., Bandyopadhyay A., Bose S., Acta Biomater., 2011, 7, 866[Crossref]
  • [11] Rautray T.R., Narayanan R., Kwon T.Y., Kim K.H., Thin Solid Films, 2010, 518, 3160
  • [12] Sobieszczyk S., Zieliński A., Adv. Mater. Sci., 2008, 8, 35
  • [13] Yoshinari M., Watanabe Y., Ohtsuka Y., Derand T., J. Dent. Res., 1997, 76, 1485[Crossref]
  • [14] Bai X., More K., Rouleau C.M., Rabiei A., Acta Biomater., 2010, 6, 2264[Crossref]
  • [15] Vasiliev M.N., In: Fortov V.E. (Ed.), Encyclopedia of low-temperature plasma, Nauka, Moscow, 2001, V IX 436 [WoS]
  • [16] Greenler R.G., J. Chem. Phys., 1969, 50, 1963
  • [17] Transferetti B.C., Davanzo C.U., Zoppi R.A., Cruz N.C., Moraes M.A.B., Phys. Rev. B., 2001, 64, 125404[Crossref]
  • [18] Zhang J.Y., Boyd I.W., O`Sullivan B.J., Hurly P.K., Kelly P.V., Senateur J.P., J. Non-Sryst. Solids, 2002, 303, 134
  • [19] Bellamy L.J., The infrared spectra of complex molecules, Methuen & Co., London, 1954
  • [20] Van der Houwen J.A.M., Cressey G., Cressy B.A., Valsami-Jones E., J. Cryst. Growth, 2003, 96, 249
  • [21] Rapacz-Kmita A., Elosarczyk A., Paszkiewicz Z.C., Paluszkiewicz C., J. Mol. Struct., 2004, 65, 704
  • [22] Berzina-Cimdina L., Borodajenko N., In: T. Theophanides (Ed.), Infrared spectroscopy – Materials science, engineering and technology, 2012, 123
  • [23] Sato K., Kumagai Y., Tanaka J., J. Biomed. Mater. Res., 2000, 50, 16[Crossref]
  • [24] Kokubo T., Ito S., Huang Z.T., Hatashi T., Sakka S., Kitsugi T., Yamamuro T., J. Biomed. Mater. Res., 1990, 24, 331[Crossref]
  • [25] Vasilieva T.M., IEEE Transac. Plasma Sci., 2010, 38, 1903[Crossref]
  • [26] Vasilieva T.M., Bayandina D.V., Instr. Exp. Tech., 2010, 53, 289
  • [27] Thull R., Grant D., In: Brunette D.M. (Ed.), Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer-Verlag, Berlin and Heidelberg, 2001, 283
  • [28] Handbook of Deposition Technologies for Film and Coatings, 2nd edition, Noyes, Park Ridge, NJ, 1994
  • [29] Yuan Y., Lee T.R., In: Bracco G., Holst B. (Eds.), Surface Science Techniques, Springer-Verlag, Berlin and Heidelberg, 2013, 3
  • [30] Aleksandrov N.L., Vasiliev M.N., Lysenko S.L., Negodaev S.S., In: 4-th European Conference for Aerospace Sciences, 4-8 July 2011, S-Petersburg, Russia
  • [31] Aleksandrov N.L., Konovalov V.P., Son E.E., In: Son E.E. (Ed.), Encyclopedia of low-temperature plasma, Yanus-K, Moscow, 2010, Ser. B. V III-3, 265
  • [32] Aleksandrov N.L., Vasiliev M.N., Lysenko S.L., Mahir A.Kh., Plasma Physics Reports, 2005, 31, 425[WoS]
  • [33] Kutasi K., Sa P.A., Guerra V., J. Phys. D: Appl. Phys., 2012, 45, 19205
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.