Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Bioreduction of fluoroacetophenone derivatives
by endophytic fungi isolated from the marine red
alga Bostrychia radicans

Content

Title variants

Languages of publication

EN

Abstracts

EN
Four endophytic fungi isolated from the
marine red alga Bostrychia radicans identified as
Botryosphaeria sp. CBMAI 1197, Eutypella sp. CBMAI
1196, Hidropisphaera sp. CBMAI 1194 and Xylaria sp.
CBMAI 1195 catalyzed the asymmetric bioreduction of
fluoroacetophenone derivatives 1-3 to the corresponding
fluorophenylalcohols 1a-3a. In the reduction reactions
of 2,2,2-trifluoro-1-phenylethanone 1, all the marine
fungi produced exclusively the (S)-2,2,2-trifluoro-
1-phenylethanol 1a with > 99% ee. The fungus
Botryosphaeria sp. CBMAI 1197 exhibited the best
enzymatic potential, leading to the highest conversion
values (up to > 99%). The biocatalyst Botryosphaeria sp.
CBMAI 1197 also presented active enzymes in reactions
with the substrates 1-(2-(trifluoromethyl)phenyl)
ethanone (2) and 1-(2,4,5-trifluorophenyl)ethanone (3),
producing the respective chiral alcohols S-2a and R-3a
with > 99% ee. Additionally, the fungus Hidropisphaera
sp. CBMAI 1194 yielded 100% of conversion of the ketone
3 to the corresponding S-alcohol 3a, with 53% ee.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

received
11 - 11 - 2015
accepted
14 - 12 - 2015
online
21 - 1 - 2016

Contributors

  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa
    Angelina, 13563-120, São Carlos, São Paulo, Brazil
  • Laboratório de
    Química Orgânica do Ambiente Marinho, Faculdade de Ciências
    Farmacêuticas de Ribeirão Preto, Universidade de São Paulo,Via do
    Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
  • Laboratório de
    Química Orgânica do Ambiente Marinho, Faculdade de Ciências
    Farmacêuticas de Ribeirão Preto, Universidade de São Paulo,Via do
    Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa
    Angelina, 13563-120, São Carlos, São Paulo, Brazil

References

  • [1] Gawley R. E. , Aubé J. Principles of Asymmetric Synthesis. 2012,2nd Ed., 2012.
  • [2] Jaeger K.E., Reetz M. Directed evolution of enantioselectiveenzymes for organic chemistry. Curr. Opin. Chem. Biol., 2000,4, 68-73.[Crossref]
  • [3] Walker M., Chang M.C.Y. Natural and engineered biosynthesisof fluorinated natural products. Chem. Soc. Rev., 2014,43,6527-6536.[Crossref][WoS]
  • [4] Xiu-de Hua, Z.; Hai-yan, S.; Liu, S.; Tian, M.; Wang, M.Enantioselective bioactivity, acute toxicity and dissipation invegetables of the chiral triazole fungicide flutriafol. J. Hazard.Mater., 2015, 284, 65-72.[WoS]
  • [5] O’hagan, D. Understanding organofluorine chemistry: Anintroduction to the C–F bond. Chem. Soc. Rev., 2008, 37,308-319.
  • [6] O´Hagan, D. Fluorine in health care: Organofluorine containingblockbuster drugs. J. Fluorine Chem., 2010, 131, 1071-1081.
  • [7] Hoff, B.H., Sundby, E., Preparation of pharmaceutical importantfluorinated 1-arylethanols using isolated enzymes. Bioorg.Chem., 2013, 51, 31-47.[WoS]
  • [8] Peter Jeschke. The unique role of fluorine in the design ofactive ingredients for modern crop protection. ChemBioChem.,2004, 5, 570-589.[Crossref]
  • [9] Lam, Y, H.; Steven, J.S.; Veronique, G. Recent progress inthe use of fluoroorganic compounds in pericyclic reactions.Tetrahedron., 2009, 65, 9905-9933.[Crossref]
  • [10] Nie, J., Hong-Chao, G., Cahard, D., Jum-ham, M. Asymmetricconstruction of stereogenic carbon centers featuring a trifluoromethylgroup from prochiral trifluoromethylated substrates.Chem. Rev., 2011, 32, 455-529.[WoS][Crossref]
  • [11]. Bonnet-Delpon, D. Le fluor : Un élément essentiel en chimiemedicinal. Ann. Pharma. Fr, 2008, 66, 56-59.[Crossref]
  • [12] Ni, Y.; Xu, J. Biocatalytic ketone reduction: A green and efficientaccess to enantiopure alcohols. Biotech. Adv., 2012, 30,1279-1288.
  • [13] Ferreira I.M., Vasconcellos S.P., Cruz J.B.C., Comasseto J.V.,Porto A.L.M., Rocha L.C. Hydrogenattion of bis-α,β-unsaturatedenones mediated by filamentous fungi. J. Biocatal. Agric.Biotechnol., 2015, 4, 144-149.
  • [14] Matsuda, T., Yamanaka, R.K., Nakamura, K. Recent progressin biocatalysis for asymmetric oxidation and reduction.Tetrahedron-Asymmetr., 2009, 20, 513-557.[WoS][Crossref]
  • [15] Nakamura, K., Yamanaka, R., Matsuda, T., Harada, T. Recentdevelopments in asymmetric reduction of ketones withbiocatalysts. Tetrahedron-Asymmetr., 2003, 14, 2659-2681.[Crossref]
  • [16] Wang, L.J., Li, C.X., Ni, Y., Liu, X., Xu, J.H. Highly efficientsynthesis of chiral alcohols with a novel NADH-dependentreductase from Streptomyces coelicolor. Biores. Technol., 2001,102, 7023-7028.
  • [17] Carballeira, J.D., Quezada, M.A., Hoyos, P., Simeó, Y., Hernaiz,M.J., Hernaiz, M.J. Microbial cells as catalysts for stereoselectiveredox reactions. Biotechnol. Adv., 2009, 27, 686-714.[WoS][Crossref]
  • [18] Goldberg, K., Schroer, K., Lutz, S., Liase, A. Biocatalyticketonereduction- A powerful tool for the production of chiralalcohols-part II: whole-cell reductions. Appl. Microbiol.Biotechnol., 2007, 76, 249-255.[WoS]
  • [19] Faber, K. Biotransformations in organic chemistry. 5 th. ed.Berlin: Springer-Verlag, 2004.
  • [20] Grunwald, P. 2009. Biocatalysis: Biochemical Fundamental andApplications. London: Imperial College, 2009.
  • [21] Cao, C., Fukae, T., Yamamoto, T., Kanamaru, S., Matsuda,T. Purification and characterization of fluorinated ketonereductase from Geotrichum candidum NBRC 5767. BiochemicalEng. J., 2013, 76, 13-16.
  • [22] Trincone, A. Potential biocatalysts originating from seaenvironments. J. Mol. Catal. B-Enzym., 2010, 66, 241-256.[Crossref]
  • [23] Oliveira, A. L. L., da Silva, D. B., Lopes, N. P., Debonsi, H. M.Chemical constituents from red algae Bostrychia radicans(Rhodomelaceae): new amides and phenolic compounds.Quim. Nova, 2012, 35, 2186-2188.[WoS][Crossref]
  • [24] Karsten, U.L.F., Gunter, O. K. The effect of salinity on growth,photosynthesis and respiration in the estuarine red algaBostrychia radicans. Helgolander Meresun, 1989, 43, 61-66.
  • [25] Mouad, A.M., Martins, M.P., Debonsi, H.M., de Oliveira, A.L.L.,de Felicio, R., Yokoya, N.S. Bioreduction of acetophenonederivatives by red marine algae Bostrychia radicans, Bostrychiatenella, and marine bacteria associated. Helv. Chim. Acta.,2011, 94, 1506-1514.[WoS][Crossref]
  • [26] Mouad, A.M., Martins, M.P., Romminger, S., Seleghim, M.H.R.,Oliveira, A.L.L., Debonsi, H.M. Bioconversion of acetophenonesby marine fungi isolated from marine algae Bostrychia radicansand Sargassum sp. Curr. Top. Biotechnol., 2012, 7, 13-19.
  • [27] Ribeiro, S.S., Raminelli, C., Porto, A.L.M. Enzymatic resolutionby CALB of organofluorine compounds under conventionalcondition and microwave irradiation. J. Fluorine Chem., 2013,154, 53-59.[WoS]
  • [28] Kjer, J., Debbab, A., Aly, A.H., Proksch, P. Methods for isolationof marine-derived endophytic fungi and their bioactivesecondary products. Nature Protoc., 2010, 5, 479-490.[Crossref][WoS]
  • [29] Sette, L.D., Passarini, M.R.Z., Delamerlina, C., Salati, F., Duarte,M.C.T. Molecular characterization and antimicrobial activityof endophytic fungi from coffee plants. World J. Microbiol.Biotechnol., 2006, 22, 1185-1195.[Crossref][WoS]
  • [30] Yadav, J.S., Reddy, B.V.S., Sreelaksmi, C., Kumar, G.G.K.S.,Rao, A.B. Enantioselective reduction of 2-substituted tetrahydropyran-4-ones using Daucus carota plant cells. TetrahedronLett., 2008, 49, 2768-2771.
  • [31] Comasseto, J.V., Omori, A.T., Porto, A.L.M., Andrade, L.H.,Preparation of chiral organochalcogeno-a-methylbenzylalcohols via biocatalysis. The role of Daucus carota root.Tetrahedron Lett., 2004, 45,473-476.
  • [32] Kasumov, V.T., Suzergo, F.; Sahin, E., Celik, O., Aslanoglu,M. Synthesis, characterization and effect of the fluorinesubstitution on the redox reactivity and in vivo anticancerbehaviors of N polyfluorophenyl-3,5- di-tert-butylsalicylaldiminesand their Cu (II) complexes. J. Fluorine Chem., 2014,162, 78-89.[WoS]
  • [33] Inoue, K., Makino, Y., Itoh, N. Production of (R)-chiral alcoholsby a hydrogen-transfer bioreduction with NADH-dependentLeifsonia alcohol dehydrogenase (LSADH). Tetrahedron-Asymmetr., 2005, 16, 2539-2549.[Crossref]
  • [34] Naemura, K., Murata, M., Tanaka, R., Yano, M., Hirose, K., Tobe,Y. Enantioselective acylation of alcohols catalyzed by lipase QLfrom Alcaligenes sp.: A predictive active site model for lipaseQL to identify the faster reacting enantiomer of alcohol in thisacylation. Tetrahedron-Asymmetr., 1996, 7, 1581-1584.[Crossref]
  • [35] Yu, F.; Wu, Z.F.; Zhou, J.; Chan, A.S.C. Cobalt (II)-catalyzedassymmetric hydrosilylation of simple ketones using dipyridylphosphineligands in air. Org. Biomol. Chem., 2011, 9,5652-5654.[Crossref][WoS]
  • [36] Ma, J., Cahard, D. Strategies for nucleophilic, electrophilic,and radical trifluoromethylations. J. Fluorine Chem., 2007, 128,975-996.[WoS]
  • [37] Kitazume, T., Yamazaki, T., Ishikawa, N. Asymmetric reductionsof fluorinated ketones and keto esters with baker’s yeast.Nippon Kagakukai Shi., 1983, 1363-1368.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_boca-2015-0011
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.