Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Biosensors based on oxidative enzymes for
detection of environmental pollutants

Content

Title variants

Languages of publication

EN

Abstracts

EN
In recent years, the continuous and accumulative
discharge of toxic and contaminating compounds to
the environment makes necessary to propose precise
and quick methods for their detection and quantitation.
Especially when one considers that the environmental
impact of some of these emerging contaminants has
not been clearly determined. Enzyme-based biosensors
are an interesting alternative when inspecting different
pollutants present in the environment in a quick, efficient,
automatized, and economic way. Oxidative enzymes such
as peroxidases and polyphenol oxidases (laccases and
tyrosinases) are versatile and highly functional enzymes
used for analyte recognition. Therefore, these enzymes
are considered attractive and interesting biomolecules to
act as recognition elements in biosensors. In this regard,
detection of pollutants such as pesticides, phenols,
heavy metals, and pharmaceutical compounds by using
oxidative enzymes as recognition elements in biosensors
is a versatile field, and it is the focus of the present review.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

received
14 - 8 - 2015
accepted
17 - 11 - 2015
online
21 - 1 - 2016

Contributors

  • Facultad de Ingeniería Química, Benemérita
    Universidad Autónoma de Puebla. Edificio 100 C. Ciudad
    Universitaria, Puebla 72570, México
  • Departamento de Procesos y Tecnología, DCNI,
    Universidad Autónoma Metropolitana, Unidad Cuajimalpa. México
    D.F., 05300, México.
  • Laboratorio de Nanotecnología Ambiental.
    Centro del Agua para América Latina y el Caribe. Tecnológico de
    Monterrey. Monterrey, N.L., CP 64849, México
  • Instituto de Ciencias, Benemérita Universidad
    Autónoma de Puebla. Edifico 103 G Ciudad Universitaria. Puebla
    72570, México
  • Instituto de Ciencias, Benemérita Universidad
    Autónoma de Puebla. Edifico 103 G Ciudad Universitaria. Puebla
    72570, México

References

  • [1] McNaught, A., Wilkinson, A., Compendium of chemicalterminology, 2nd ed. (the “Gold Book”), Blackwell ScientificPublications, Oxford, 1997.
  • [2] Eggins, B. R., Chemical Sensors and Biosensors, John Wileyand Sons, United Kingdom, 2002.
  • [3] Bănică, F.-G., Chemical Sensors and Biosensors: Fundamentalsand Applications 1st ed., Jonh Wiley and Sons, Ltd, UnitedKingdom, 2012, p. 541.
  • [4] Thévenot, D. R., Toth, K., Durst, R. A., Wilson, G. S., Electrochemicalbiosensors: recommended definitions andclassification1, Biosensors Bioelectron., 2001, 16, 121-131.[Crossref]
  • [5] Luong, J. H. T., Male, K. B., Glennon, J. D., Biosensortechnology: Technology push versus market pull, Biotechnol.Adv., 2008, 26, 492-500.[Crossref]
  • [6] Mascini M, S., T., Biosensors for biomarkers in medicaldiagnostics, Biomarkers, 2008, 13, 637-657.[Crossref]
  • [7] Amine, A., Mohammadi, H., Bourais, I., Palleschi, G., Enzymeinhibition-based biosensors for food safety and environmentalmonitoring, Biosensors Bioelectron., 2006, 21, 1405-1423.[Crossref]
  • [8] Newman, J., Setford, S., Enzymatic biosensors, Mol.Biotechnol., 2006, 32, 249-268.[Crossref]
  • [9] Cao, S., Chen, J., Jin, X., Wu, W., Zhao, Z., Enzyme-BasedBiosensors: Synthesis and Applications. In: (Eds.), BiosensorNanomaterials, ed., Wiley-VCH Verlag GmbH & Co. KGaA 2011.
  • [10] Bănică, F.-G., Enzymes and Enzymatic Sensors. In: (Eds.),Chemical Sensors and Biosensors, ed., John Wiley & Sons, Ltd2012.
  • [11] Rodriguez-Mozaz, S., Alda, M. J. L. d., Marco, M.-P., Barceló, D.,Biosensors for environmental monitoring: A global perspective,Talanta, 2005, 65, 291-297.
  • [12] Rodriguez-Mozaz, S., Lopez de Alda, M., Barceló, D.,Biosensors as useful tools for environmental analysis andmonitoring, Anal. Bioanal. Chem., 2006, 386, 1025-1041.
  • [13] D’Orazio, P., Biosensors in clinical chemistry, Clin. Chim. Acta,2003, 334, 41-69.
  • [14] Illanes, A., Enzyme biocatalysis: principles and applications,Springer-Netherlands, New Delhi, India, 2008.
  • [15] Casella, L., Monzani, E., Nicolis, S., Potential applications ofperoxidases in the fine chemical industries. In: E. Torres, M.Ayala. (Eds.), Biocatalysis Based on Heme Peroxidases, 1sd ed.,Springer Berlin Heidelberg, Heilderberg, Germany, 2010.
  • [16] Torres-Duarte, C., Vazquez-Duhalt, R., Applications andProspective of Peroxidase Biocatalysis in the EnvironmentalField. In: E. Torres, M. Ayala. (Eds.), Biocatalysis Based onHeme Peroxidases, ed., Springer Berlin Heidelberg 2010.
  • [17] Pundir, C. S., Chauhan, N., Acetylcholinesterase inhibitionbasedbiosensors for pesticide determination: A review, Anal.Biochem., 2012, 429, 19-31.
  • [18] Miao, Y., He, N., Zhu, J.-J., History and new developments ofassays for cholinesterase activity and inhibition, Chem. Rev.,2010, 110, 5216-5234.
  • [19] Van Dyk, J. S., Pletschke, B., Review on the use of enzymesfor the detection of organochlorine, organophosphate andcarbamate pesticides in the environment, Chemosphere, 2011,82, 291-307.
  • [20] Mercurio, P., Flores, F., Mueller, J. F., Carter, S., Negri, A. P.,Glyphosate persistence in seawater, Mar. Pollut. Bull., 2014,85, 385-390.
  • [21] Hsu, C.-C., Whang, C.-W., Microscale solid phase extractionof glyphosate and aminomethylphosphonic acid in waterand guava fruit extract using alumina-coated iron oxidenanoparticles followed by capillary electrophoresis and electrochemiluminescencedetection, J. Chromatogr., 2009, 1216,8575-8580.
  • [22] Qian, K., Tang, T., Shi, T., Wang, F., Li, J., Cao, Y., Residuedetermination of glyphosate in environmental water sampleswith high-performance liquid chromatography and UVdetection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride,Anal. Chim. Acta, 2009, 635, 222-226.
  • [23] Hanke, I., Singer, H., Hollender, J., Ultratrace-leveldetermination of glyphosate, aminomethylphosphonic acid andglufosinate in natural waters by solid-phase extraction followedby liquid chromatography–tandem mass spectrometry:performance tuning of derivatization, enrichment anddetection, Anal. Bioanal. Chem., 2008, 391, 2265-2276.
  • [24] Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J.,Possavatz, J., Magalhães, M. R. L., Dores, E. F. G. C., Biosensorbased on atemoya peroxidase immobilised on modifiednanoclay for glyphosate biomonitoring, Talanta, 2012, 98,130-136.
  • [25] Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker,P. G. L., Iwuoha, E. I., Electrochemical detection of glyphosateherbicide using horseradish peroxidase immobilized onsulfonated polymer matrix, Bioelectrochemistry, 2009, 75,117-123.
  • [26] Ribeiro, F. W. P., Barroso, M. F., Morais, S., Viswanathan, S.,de Lima-Neto, P., Correia, A. N., Oliveira, M. B. P. P., Delerue-Matos, C., Simple laccase-based biosensor for formetanatehydrochloride quantification in fruits, Bioelectrochemistry,2014, 95, 7-14.
  • [27] Qiu, C., Chen, T., Wang, X., Li, Y., Ma, H., Application ofhorseradish peroxidase modified nanostructured Au thin filmsfor the amperometric detection of 4-chlorophenol, ColloidsSurf. B. Biointerfaces, 2013, 103, 129-135.
  • [28] Rodriguez-Mozaz, S., Marco, M.-P., Lopez de Alda, M. J.,Barceló, D., Biosensors for environmental applications: Futuredevelopment trends, Pure Appl. Chem, 2004, 76, 723-752.
  • [29] Nomngongo, P. N., Ngila, J. C., Nyamori, V. O., Songa, E. A.,Iwuoha, E. I., Determination of selected heavy metals usingamperometric horseradish peroxidase (HRP) inhibitionbiosensor, Anal. Lett., 2011, 44, 2031-2046.[Crossref]
  • [30] Silwana, B., Van Der Horst, C., Iwuoha, E., Somerset, V.,Amperometric determination of cadmium, lead, and mercurymetal ions using a novel polymer immobilised horseradishperoxidase biosensor system, J. Environ. Sci. Heal. A, 2014, 49,1501-1511.
  • [31] Moyo, M., Okonkwo, J. O., Agyei, N. M., An amperometricbiosensor based on horseradish peroxidase immobilized ontomaize tassel-multi-walled carbon nanotubes modified glassycarbon electrode for determination of heavy metal ions inaqueous solution, Enzyme Microb. Technol., 2014, 56, 28-34.[Crossref]
  • [32] Moyo, M., Okonkwo, J. O., Horseradish peroxidase biosensorbased on maize tassel–MWCNTs composite for cadmiumdetection, Sensors Actuators B: Chem., 2014, 193, 515-521.
  • [33] Domı́nguez Renedo, O., Alonso Lomillo, M. A., Arcos Martinez,M. J., Optimisation procedure for the inhibitive determinationof chromium(III) using an amperometric tyrosinase biosensor,Anal. Chim. Acta, 2004, 521, 215-221.
  • [34] Khetan, S. K., Collins, T. J., Human pharmaceuticals in theaquatic environment: a challenge to green chemistry, Chem.Rev., 2007, 107, 2319-2364.
  • [35] Verlicchi, P., Al Aukidy, M., Zambello, E., Occurrence ofpharmaceutical compounds in urban wastewater: Removal,mass load and environmental risk after a secondarytreatment-A review, Sci. Total Environ., 2012, 429, 123-155.
  • [36] Fent, K., Weston, A. A., Caminada, D., Ecotoxicology of humanpharmaceuticals, Aquat. Toxicol., 2006, 76, 122-159.
  • [37] Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., Barceló,D., Environmental risk assessment of pharmaceutical residuesin wastewater effluents, surface waters and sediments,Talanta, 2006, 69, 334-342.
  • [38] Alonso-Lomillo, M. A., Domínguez-Renedo, O., Hernández-Martín, A., Arcos-Martínez, M. J., Horseradish peroxidasecovalent grafting onto screen-printed carbon electrodes forlevetiracetam chronoamperometric determination, Anal.Biochem., 2009, 395, 86-90.
  • [39] Bertolino, F. A., De Vito, I. E., Messina, G. A., Fernández, H.,Raba, J., Microfluidic-enzymatic biosensor with immobilizedtyrosinase for electrochemical detection of pipemidic acidin pharmaceutical samples, J. Electroanal. Chem., 2011, 651,204-210.
  • [40] Moccelini, S. K., Franzoi, A. C., Vieira, I. C., Dupont, J.,Scheeren, C. W., A novel support for laccase immobilization:Cellulose acetate modified with ionic liquid and application inbiosensor for methyldopa detection, Biosensors Bioelectron.,2011, 26, 3549-3554.[Crossref]
  • [41] Kolpin, D. W., Skopec, M., Meyer, M. T., Furlong, E. T., Zaugg,S. D., Urban contribution of pharmaceuticals and other organicwastewater contaminants to streams during differing flowconditions, Sci. Total Environ., 2004, 328, 119-130.
  • [42] González-Sánchez, M. I., Rubio-Retama, J., López-Cabarcos, E.,Valero, E., Development of an acetaminophen amperometricbiosensor based on peroxidase entrapped in polyacrylamidemicrogels, Biosensors Bioelectron., 2011, 26, 1883-1889.[Crossref]
  • [43] Méndez-Albores, A., Tarín, C., Rebollar-Pérez, G., Dominguez-Ramirez, L., Torres, E., Biocatalytic spectrophotometric methodto detect paracetamol in water samples, J. Environ. Sci. Heal. A,2015, 50, 1046-1056.[Crossref]
  • [44] Karim, F., Fakhruddin, A. N. M., Recent advances in thedevelopment of biosensor for phenol: a review, Rev. Environ.Sci. Bio/Tecnhnol., 2012, 11, 261-274.[Crossref]
  • [45] Durán, N., Rosa, M. A., D’Annibale, A., Gianfreda, L.,Applications of laccases and tyrosinases (phenoloxidases)immobilized on different supports: a review, Enzyme Microb.Technol., 2002, 31, 907-931.[Crossref]
  • [46] Campos-Terán, J., Iñarritu, I., Aburto, J., Torres, E., Enhancedfunctionality of peroxidases by its immobilization at the solid–Llquid interface of mesoporous materials and nanoparticles.In: (Eds.), Proteins in Solution and at Interfaces, ed., JohnWiley & Sons, Inc. 2013.
  • [47] Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J.M., Fernandez-Lafuente, R., Improvement of enzyme activity,stability and selectivity via immobilization techniques, EnzymeMicrob. Technol., 2007, 40, 1451-1463.[Crossref]
  • [48] Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres,R., Fernandez-Lafuente, R., Modifying enzyme activity andselectivity by immobilization, Chem. Soc. Rev., 2013, 42,6290-6307.[Crossref]
  • [49] Wang, Y., Xu, H., Zhang, J., Li, G., Electrochemical sensorsfor clinic analysis, Sensors (Basel, Switzerland), 2008, 8,2043-2081.[Crossref]
  • [50] Sheldon, R. A., van Pelt, S., Enzyme immobilisation inbiocatalysis: why, what and how, Chem. Soc. Rev., 2013, 42,6223-6235.[Crossref]
  • [51] Longoria, A., Tinoco, R., Torres, E., Enzyme technologyof peroxidases: immobilization, chemical and geneticmodification. In: E. Torres, M. Ayala. (Eds.), Biocatalysis Basedon Heme Peroxidases, 1sd ed., Springer Berlin Heidelberg,Heidelberg, Germany, 2010.
  • [52] Fernandes, S. C., de Oliveira, I. R. W. Z., Fatibello-Filho,O., Spinelli, A., Vieira, I. C., Biosensor based on laccaseimmobilized on microspheres of chitosan crosslinked withtripolyphosphate, Sensors Actuators B: Chem., 2008, 133,202-207.
  • [53] Santhiago, M., Vieira, I. C., l-Cysteine determination inpharmaceutical formulations using a biosensor based onlaccase from Aspergillus oryzae, Sensors Actuators B: Chem.,2007, 128, 279-285.
  • [54] Gupta, G., Rajendran, V., Atanassov, P., Laccase biosensor onmonolayer-modified gold electrode, Electroanalysis, 2003, 15,1577-1583.[Crossref]
  • [55] Yu, J., Ju, H., Pure Ooganic phase phenol biosensor basedon tyrosinase entrapped in a vapor deposited titania sol-gelmembrane, Electroanalysis, 2004, 16, 1305-1310.[Crossref]
  • [56] Yildiz, H. B., Castillo, J., Guschin, D. A., Toppare, L.,Schuhmann, W., Phenol biosensor based on electrochemicallycontrolled integration of tyrosinase in a redox polymer,Microchimica Acta, 2007, 159, 27-34.
  • [57] Tembe, S., Inamdar, S., Haram, S., Karve, M., D’Souza, S. F.,Electrochemical biosensor for catechol using agarose–guargum entrapped tyrosinase, J. Biotechnol., 2007, 128, 80-85.
  • [58] Cipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M.M. C., Oliveira, J. V., Ninow, J. L., de Oliveira, D., Current statusand trends in enzymatic nanoimmobilization, J. Mol. Catal. B:Enzym., 2014, 99, 56-67.[Crossref]
  • [59] Ansari, S. A., Husain, Q., Potential applications of enzymesimmobilized on/in nano materials: A review, Biotechnol. Adv.,2012, 30, 512-523.[Crossref]
  • [60] Timur, S., Pazarlıoǧlu, N., Pilloton, R., Telefoncu, A., Thick filmsensors based on laccases from different sources immobilizedin polyaniline matrix, Sensors Actuators B: Chem., 2004, 97,132-136.
  • [61] Chawla, S., Rawal, R., Sharma, S., Pundir, C. S., Anamperometric biosensor based on laccase immobilizedonto nickel nanoparticles/carboxylated multiwalledcarbon nanotubes/polyaniline modified gold electrode fordetermination of phenolic content in fruit juices, Biochem. Eng.J., 2012, 68, 76-84.
  • [62] Chawla, S., Rawal, R., Pundir, C. S., Fabrication of polyphenolbiosensor based on laccase immobilized on coppernanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode, J. Biotechnol., 2011, 156,39-45.
  • [63] Rahman, M. A., Noh, H.-B., Shim, Y.-B., Direct electrochemistryof laccase immobilized on Au nanoparticles encapsulateddendrimerbonded conducting polymer: application for acatechin sensor, Anal. Chem., 2008, 80, 8020-8027.
  • [64] Chen, X., Li, D., Li, G., Luo, L., Ullah, N., Wei, Q., Huang, F.,Facile fabrication of gold nanoparticle on zein ultrafine fibersand their application for catechol biosensor, Appl. Surf. Sci.,2015, 328, 444-452.
  • [65] Marazuela, M., Moreno-Bondi, M., Fiber-optic biosensors – anoverview, Anal. Bioanal. Chem., 2002, 372, 664-682.
  • [66] Zhang, Y., He, P., Hu, N., Horseradish peroxidase immobilizedin TiO2 nanoparticle films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis, Electrochim.Acta, 2004, 49, 1981-1988.
  • [67] Zhang, L., Zhang, Q., Lu, X., Li, J., Direct electrochemistryand electrocatalysis based on film of horseradish peroxidaseintercalated into layered titanate nano-sheets, BiosensorsBioelectron., 2007, 23, 102-106.[Crossref]
  • [68] Xiao, P., Garcia, B. B., Guo, Q., Liu, D., Cao, G., TiO2 nanotubearrays fabricated by anodization in different electrolytes forbiosensing, Electrochem. Commun., 2007, 9, 2441-2447.
  • [69] Viticoli, M., Curulli, A., Cusma, A., Kaciulis, S., Nunziante,S., Pandolfi, L., Valentini, F., Padeletti, G., Third-generationbiosensors based on TiO2 nanostructured films, Mater. Sci.Eng., C, 2006, 26, 947-951.
  • [70] Zhang, F., Zheng, B., Zhang, J., Huang, X., Liu, H., Guo, S.,Zhang, J., Horseradish peroxidase immobilized on grapheneoxide: physical properties and applications in phenoliccompound removal, J. Phys. Chem. C, 2010, 114, 8469-8473.
  • [71] Zhu, Y., Cao, H., Tang, L., Yang, X., Li, C., Immobilization ofhorseradish peroxidase in three-dimensional macroporousTiO2 matrices for biosensor applications, Electrochim. Acta,2009, 54, 2823-2827.
  • [72] Yang, X., Wang, P., Zhu, Y., Li, C., Photoelectronic propertiesof horseradish peroxidase-functionalized CdSe/silicamesoporous composite and its sensing towards hydrogenperoxide, J. Solid State Electrochem., 2011, 15, 731-736.
  • [73] Kirsch, J., Siltanen, C., Zhou, Q., Revzin, A., Simonian, A.,Biosensor technology: recent advances in threat agentdetection and medicine, Chem. Soc. Rev., 2013, 42, 8733-8768.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_boca-2015-0010
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.