Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Computational Tools Applied to Enzyme Design
− a review


Title variants

Languages of publication



The protein design toolbox has been greatly
improved by the addition of enzyme computational
simulations. Not only do they warrant a more ambitious
and thorough exploration of sequence space, but a much
higher number of variants and protein-ligand systems
can be analyzed in silico compared to experimental
engineering methods. Modern computational tools are
being used to redesign and also for de novo generation
of enzymes. These approaches are contingent on a
deep understanding of the reaction mechanism and the
enzyme’s three-dimensional structure coordinates, but
the wealth of information produced by these analyses
leads to greatly improved or even totally new types of








Physical description


10 - 11 - 2015
11 - 8 - 2015
2 - 2 - 2016


  • Departamento
    de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología,
    Universidad Nacional Autónoma de México, Av. Universidad
    2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Departamento
    de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología,
    Universidad Nacional Autónoma de México, Av. Universidad
    2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Departamento
    de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología,
    Universidad Nacional Autónoma de México, Av. Universidad
    2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México
  • Departamento
    de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología,
    Universidad Nacional Autónoma de México, Av. Universidad
    2001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos, México


  • [1] Barrozo A, Borstnar R, Marloie G, Kamerlin SC. Computationalprotein engineering: bridging the gap between rational designand laboratory evolution. Int J Mol Sci, 2012, 13(10), 12428-60.[Crossref]
  • [2] Wijma HJ, Janssen DB. Computational design gains momentumin enzyme catalysis engineering. FEBS Journal, 2013, 280(13),2948-60.
  • [3] Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC,Robins K. Engineering the third wave of biocatalysis. Nature,2012, 485(7397), 185-94.
  • [4] Hilvert D. Critical analysis of antibody catalysis. Annual review ofbiochemistry, 2000, 751-93.[Crossref]
  • [5] Nanda V, Koder RL. Designing artificial enzymes by intuition andcomputation. Nature chemistry, 2010, 2(1), 15-24.[Crossref]
  • [6] Sasaki T, Kaiser ET. Helichrome: synthesis and enzymic activityof a designed hemeprotein. Journal of the American ChemicalSociety, 1989, 111, 380-1.
  • [7] Johnsson K, Allemann RK, Widmer H, Benner Sa. Synthesis,structure and activity of artificial, rationally designed catalyticpolypeptides. Nature, 1993, 365(6446), 530-2.
  • [8] Rossi P, Tecilla P, Baltzer L, Scrimin P. De novo metallonucleasesbased on helix-loop-helix motifs. Chemistry - A EuropeanJournal, 2004, 10(17), 4163-70.[Crossref]
  • [9] Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS. High-resolutionprotein design with backbone freedom. Science, 1998,282(5393), 1462-7.
  • [10] Koder RL, Valentine KG, Cerda J, Noy D, Smith KM, Wand AJ, etal. Nativelike structure in designed four α-helix bundles drivenby buried polar interactions. J Am Chem Soc, 2006, 128(45),14450-1.
  • [11] Koder RL, Anderson JLR, Solomon La, Reddy KS, Moser CC,Dutton PL. Design and engineering of an O(2) transport protein.Nature, 2009, 458(7236), 305-9.
  • [12] Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, BakerD. Design of a novel globular protein fold with atomic-levelaccuracy. Science, 2003, 302(5649), 1364-8.
  • [13] Taylor SE, Rutherford TJ, Allemann RK. Design of a folded, conformationallystable oxaloacetate decarboxylase. Journal of theChemical Society, Perkin Trans 2, 2002, (4), 751-5.
  • [14] Nicoll AJ, Allemann RK. Nucleophilic and general acid catalysis atphysiological pH by a designed miniature esterase. Org BiomolChem, 7, 2(15), 2175-80.
  • [15] Marvin JS, Hellinga HW. Conversion of a maltose receptor into azinc biosensor by computational design. Proc Natl Acad Sci USA,2001, 98(9), 4955-60.[Crossref]
  • [16] Bolon DN, Mayo SL. Enzyme-like proteins by computationaldesign. Proc Natl Acad Sci USA, 2001, 98(25), 14274-9.
  • [17] Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D,Zanghellini A, et al. De novo computational design of retro-aldolenzymes. Science, 2008, 319(5868), 1387-91.
  • [18] Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancieJ, Betker J, et al. Kemp elimination catalysts by computationalenzyme design. Nature, 2008, 453(7192), 190-5.
  • [19] Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, Clair JLS,et al. Computational design of an enzyme catalyst for a stereoselectivebimolecular Diels-Alder. Science, 2010, 105(2004),309-13.
  • [20. Tommos C, Skalicky JJ, Pilloud DL, Wand aJ, Dutton PL. De novoproteins as models of radical enzymes. Biochemistry, 1999,38(29), 9495-507.[Crossref]
  • [21] Damborsky J, Brezovsky J. Computational tools for designing andengineering enzymes. Curr Opin Chem Biol, 2014, 4, 19, 8-16.[Crossref]
  • [22] Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J,Kozlikova B, et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLoS Comput Biol,2012, 8(10), e1002708.
  • [23] Bhabha G, Biel JT, Fraser JS. Keep on Moving: Discovering andPerturbing the Conformational Dynamics of Enzymes. AccountsChem Res, 2015, 48(2), 423-30.[Crossref]
  • [24] Ion BF, Bushnell EAC, Luna PD, Gauld JW. A Molecular Dynamics(MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) Study on Ornithine Cyclodeaminase (OCD): A Tale of TwoIminiums. Int J Mol Sci, 2012, 13(10), 12994.[Crossref]
  • [25] Chu Y, Li G, Guo H. QM/MM MD and free energy simulations ofthe methylation reactions catalyzed by protein arginine methyltransferasePRMT3. Can J Chem, 2013, 91(7), 605-12.
  • [26] Hargis JC, White JK, Chen Y, Woodcock HL. Can MolecularDynamics and QM/MM Solve the Penicillin Binding ProteinProtonation Puzzle? J Chem Inf Model, 2014, 54(5), 1412-24.[Crossref]
  • [27] Monza E, Lucas MF, Camarero S, Alejaldre LC, Martínez AT,Guallar V. Insights into Laccase Engineering from MolecularSimulations: Toward a Binding-Focused Strategy. J Phys ChemLett, 2015, 6(8), 1447-53.[Crossref]
  • [28] Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN.Computational enzyme design. Angew Chem Int Ed Engl, 2013,52(22), 5700-25.[Crossref]
  • [29] Casey ML, Kemp DS, Paul KG, Cox DD. Physical organic chemistryof benzisoxazoles. I. Mechanism of the base-catalyzeddecomposition of benzisoxazoles. J Org Chem, 1973, 38(13),2294-301.[Crossref]
  • [30] Kemp DS, Cox DD, Paul KG. Physical organic chemistry ofbenzisoxazoles. IV. Origins and catalytic nature of the solventrate acceleration for the decarboxylation of 3-carboxybenzisoxazoles.J Am Chem Soc, 1975, 97(25), 7312-8.
  • [31] Lassila JK, Privett HK, Allen BD, Mayo SL. Combinatorial methodsfor small-molecule placement in computational enzyme design.Proc Natl Acad Sci USA, 2006, 103(45), 16710-5.
  • [32] Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA, Thomas LM, etal. Iterative approach to computational enzyme design. Proc NatlAcad Sci USA, 2012, 109(10), 3790-5.
  • [33] Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S,Houk KN, et al. Bridging the gaps in design methodologies byevolutionary optimization of the stability and proficiency ofdesigned Kemp eliminase KE59. Proc Natl Acad Sci USA, 2012,109(26), 10358-63.
  • [34] Blomberg R, Kries H, Pinkas DM, Mittl PRE, Grutter MG, PrivettHK, et al. Precision is essential for efficient catalysis in anevolved Kemp eliminase. Nature, 2013, 503(7476), 418-21.
  • [35] Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, et al.Evolution of a designed retro-aldolase leads to complete activesite remodeling. Nat Chem Biol, 2013, 9(8), 494-8.[Crossref]
  • [36] Warshel A, Levitt M. Theoretical studies of enzymic reactions:Dielectric, electrostatic and steric stabilization of the carboniumion in the reaction of lysozyme. J Mol Biol, 1976, 103(2), 227-49.
  • [37] Alderson RG, Ferrari LD, Mavridis L, McDonagh JL, Mitchell JBO,Nath N. Enzyme Informatics. Curr Top Med Chem, 2012, 12(17),1911-23.[Crossref]
  • [38] Mulholland Adrian J. Computational enzymology: modelling themechanisms of biological catalysts. Biochem Soc Trans, 2008,36(1), 22-6.
  • [39] Senn H, Thiel W. QM/MM Methods for Biological Systems. In:Reiher M, editor. Atomistic Approaches in Modern Biology. TopCurr Chem, 2007, 268, 173-290.
  • [40] Hu H, Yang W. Development and application of ab initio QM/MMmethods for mechanistic simulation of reactions in solution andin enzymes. J Mol Struct, 2009, 898(1–3), 17-30.
  • [41] Groenhof G. Introduction to QM/MM Simulations. In: MonticelliL, Salonen E, editors. Biomolecular Simulations. Met Mol Biol,2013, 924, 43-66.
  • [42] Vidossich P, Magistrato A. QM/MM Molecular Dynamics Studiesof Metal Binding Proteins. Biomolecules, 2014, 4(3), 616.[Crossref]
  • [43] Torres E, Ayala M., Biocatalysis by Metalloenzymes. In:Poeppelmeier JR, editor. Comprehensive Inorganic Chemistry II(Second Edition). Amsterdam: Elsevier; 2013, 685-735.
  • [44] Lodola A, De Vivo M., The Increasing Role of QM/MM in DrugDiscovery. In: Christo C, Tatyana K-C, editors. Advances inProtein Chemistry and Structural Biology, Academic Press, 2012,337-62.
  • [45] Feliciano GT, da Silva AJR. Unravelling the reaction mechanismof matrix metalloproteinase 3 using QM/MM calculations. J MolStruct, 2015, 1091(0), 125-32.
  • [46] Hermann JC, Hensen C, Ridder L, Mulholland AJ, Höltje H-D.Mechanisms of Antibiotic Resistance: QM/MM Modeling of theAcylation Reaction of a Class A β-Lactamase with Benzylpenicillin.J Am Chem Soc, 2005, 127(12), 4454-65.
  • [47] Hermann JC, Ridder L, Holtje H-D, Mulholland AJ. Molecularmechanisms of antibiotic resistance: QM/MM modelling ofdeacylation in a class A
  • [small beta]-lactamase. Org BiomolChem, 2006, 4(2), 206-10.
  • [48] Kong X, Ouyang S, Liang Z, Lu J, Chen L, Shen B, et al. CatalyticMechanism Investigation of Lysine-Specific Demethylase 1(LSD1): A Computational Study. PLoS ONE, 2011, 6(9), e25444.[Crossref]
  • [49] Palermo G, Rothlisberger U, Cavalli A, De Vivo M. Computationalinsights into function and inhibition of fatty acid amidehydrolase. Eur J Med Chem, 2015, 91(0), 15-26.
  • [50] Guallar V, Wallrapp FH. QM/MM methods: Looking inside hemeproteins biochemisty. Biophys Chem, 2010, 149(1–2), 1-11.
  • [51] Wallrapp F, Masone D, Guallar V. Electron Transfer in theP450cam/PDX Complex. The QM/MM e-Pathway†. J Phys ChemA, 2008, 18, 112(50), 12989-94.
  • [52] Vidal-Limón A, Águila S, Ayala M, Batista CV, Vazquez-DuhaltR. Peroxidase activity stabilization of cytochrome P450BM3by rational analysis of intramolecular electron transfer. J InorgBiochem, 2013, 122(0), 18-26.
  • [53] Jung ST, Lauchli R, Arnold FH. Cytochrome P450: taming a wildtype enzyme. Curr Opin Biotech, 2011, 22(6), 809-17.[Crossref]
  • [54] Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide Inactivationof Peroxidases and the Challenge of Engineering More RobustEnzymes. Chem Biol, 2002, 9(5), 555-65.[Crossref]
  • [55] Frushicheva MP, Warshel A. Towards Quantitative ComputerAided Studies of Enzymatic Enantioselectivity: The case ofCandida antarctica lipase A. Chembiochem, 2012, 13(2), 215-23.[Crossref]
  • [56] Frushicheva MP, Cao J, Warshel A. Challenges and Advancesin Validating Enzyme Design Proposals: The Case of KempEliminase Catalysis. Biochemistry, 2011, 50(18), 3849-58.[Crossref]
  • [57] Kries H, Blomberg R, Hilvert D. De novo enzymes bycomputational design. Curr Opin Cheml Biol, 2013, 17(2), 221-8.[Crossref]
  • [58] Silva JRA, Roitberg AE, Alves CN. Catalytic Mechanism ofL,D-Transpeptidase 2 from Mycobacterium tuberculosisDescribed by a Computational Approach: Insights for theDesign of New Antibiotics Drugs. J Chem Inf Model, 2014, 54(9),2402-10.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.