Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Enzymatic microreactors in biocatalysis: history,
features, and future perspectives

Content

Title variants

Languages of publication

EN

Abstracts

EN
Microfluidic reaction devices are a very
promising technology for chemical and biochemical
processes. In microreactors, the micro dimensions,
coupled with a high surface area/volume ratio, permit
rapid heat exchange and mass transfer, resulting in higher
reaction yields and reaction rates than in conventional
reactors. Moreover, the lower energy consumption and
easier separation of products permit these systems to
have a lower environmental impact compared to macroscale,
conventional reactors. Due to these benefits, the
use of microreactors is increasing in the biocatalysis
field, both by using enzymes in solution and their
immobilized counterparts. Following an introduction
to the most common applications of microreactors in
chemical processes, a broad overview will be given of the
latest applications in biocatalytic processes performed
in microreactors with free or immobilized enzymes. In
particular, attention is given to the nature of the materials
used as a support for the enzymes and the strategies
employed for their immobilization. Mathematical and
engineering aspects concerning fluid dynamics in
microreactors were also taken into account as fundamental
factors for the optimization of these systems.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

accepted
11 - 9 - 2015
online
25 - 2 - 2016
received
3 - 3 - 2015

Contributors

author
  • Department of Chemistry,
    University of Torino, I-10125 - Torino, Italy
  • Department of Chemical Engineering,
    University of São Paulo, 05508010 - São Paulo, SP - Brasil

References

  • [1] Mosesman M. A., In situ x-ray diffraction studies of heterogeneousreactions, J. Am. Chem. Soc., 1951, 73, 5635-5639.[Crossref]
  • [2] Wohlgemuth R., Plazl I., Žnidaršič-Plazl P., Gernaey K. V.,Woodley J. M., Microscale technology and biocatalyticprocesses: opportunities and challenges for synthesis, TrendsBiotechnol., 2015, 33, 302-314.[Crossref]
  • [3] Hessel V., Kralisch D., Kockmann N., Noël T., Wang Q., Novelprocess windows for enabling, accelerating, and uplifting flowchemistry, ChemSusChem, 2013, 6, 746-789.[Crossref]
  • [4] Wiles C., Watts P., Continuous flow reactors, a tool for themodern synthetic chemist, Eur. J. Org. Chem., 2008, 1655-1671.[Crossref]
  • [5] Frost C. G., Mutton L., Heterogeneous catalytic synthesis usingmicroreactor technology, Green Chem., 2010, 12, 1687-1703.[Crossref]
  • [6] McMullen J. P., Jensen K. F., Integrated Microreactorsfor Reaction Automation: New Approaches to ReactionDevelopment, Annu. Rev. Anal. Chem., 2010, 3, 19-42.[Crossref]
  • [7] Brandner J. J., Microfabrication in metals, ceramics andpolymers, Russ. J. Gen. Chem., 2012, 82, 2025-2033.[Crossref]
  • [8] Schönfeld H., Hunger K., Cecilia R., Kunz U., Enhanced masstransfer using a novel polymer/carrier microreactor, Chem.Eng. J., 2004, 101, 455-463.[Crossref]
  • [9] Watts P., Haswell S. J., The application of micro reactors fororganic synthesis, Chem. Soc. Rev., 2005, 34, 235-246.[Crossref]
  • [10] Sudarsan A. P., Ugaz V. M., Fluid mixing in planar spiralmicrochannels, Lab. Chip., 2006, 6, 74-82.[Crossref]
  • [11] Bošković D., Loebbecke S., Gross G. A., Koehler J. M.,Residence Time Distribution Studies in Microfluidic MixingStructures, Chem. Eng. Technol., 2011, 34, 361-370.[Crossref]
  • [12] Hessel V., Löwe H., Schönfeld F., Micromixers - A review onpassive and active mixing principles, Chem. Eng. Sci., 2005,60, 2479-2501.[Crossref]
  • [13] Aoki N., Umei R., Yoshida A., Mae K., Design method formicromixers considering influence of channel confluence andbend on diffusion length, Chem. Eng. J., 2011, 167, 643-650.
  • [14] Marques M. P. C., Fernandes P., Microfluidic devices: Usefultools for bioprocess intensification, Molecules, 2011, 16,8368-8401.[Crossref]
  • [15] Hartman R. L., McMullen J. P., Jensen K. F., Deciding WhetherTo Go with the Flow: Evaluating the Merits of Flow Reactors forSynthesis, Angew. Chem. Int. Edit., 2011, 50, 7502-7519.[Crossref]
  • [16] Fukuyama T., Rahman M. T., Kamata N., Ryu I., Radicalcarbonylations using a continuous microflow system, BeilsteinJ. Org. Chem., 2009, 5, 34.
  • [17] Fukuyama T., Totoki T., Ryu I., Carbonylation in microflow: Closeencounters of CO and reactive species, Green Chem., 2014, 16,2042-2050.[Crossref]
  • [18] Yoshida J., Flash chemistry: flow microreactor synthesis basedon high-resolution reaction time control, Chem. Rec., 2010, 10,332-341.[Crossref]
  • [19] Roberge D. M., Ducry L., Bieler N., Cretton P., Zimmermann B.,Microreactor Technology: A Revolution for the Fine Chemicaland Pharmaceutical Industries?, Chem. Eng. Technol., 2005,28, 318-323.[Crossref]
  • [20] Kobayashi J., Mori Y., Okamoto K., Akiyama R., Ueno M.,Kitamori T., Kobayashi S., A Microfluidic Device for ConductingGas-Liquid-Solid Hydrogenation Reactions, Science, 2004,304, 1305-1308.
  • [21] Aoki N., Hasebe S., Mae K., Mixing in microreactors:effectiveness of lamination segments as a form of feed onproduct distribution for multiple reactions, Chem. Eng. J.,2004, 101, 323-331.[Crossref]
  • [22] Bothe D., Stemich C., Warnecke H.-J., Computation of scalesand quality of mixing in a T-shaped microreactor, Comp. Chem.Eng., 2008, 32, 108-114.[Crossref]
  • [23] Amador C., Wenn D., Shaw J., Gavriilidis A., Angeli P., Designof a mesh microreactor for even flow distribution and narrowresidence time distribution, Chem. Eng. J., 2008, 135,Supplement 1, S259-S269.
  • [24] Kumaraguru T., Babita P., Sheelu G., Lavanya K., Fadnavis N.W., Synthesis of Enantiomerically Pure 4-Hydroxy-2-cyclopentenones,Org. Process Res. Dev., 2013, 17, 1526-1530.[Crossref]
  • [25] Tomida Y., Nagaki A., Yoshida J.-i., Asymmetric Carbolithiationof Conjugated Enynes: A Flow Microreactor Enables the Useof Configurationally Unstable Intermediates before TheyEpimerize, J. Am. Chem. Soc., 2011, 133, 3744-3747.
  • [26] Amii H., Nagaki A., Yoshida J. I., Flow microreactor synthesisin organo-fluorine chemistry, Beilstein J. Org. Chem., 2013, 9,2793-2802.
  • [27] Chambers R. D., Fox M. A., Sandford G., Elemental fluorine.Part 18. Selective direct fluorination of 1,3-ketoesters and1,3-diketones using gas/liquid microreactor technology, LabChip, 2005, 5, 1132-1139.
  • [28] Chun J. H., Lu S., Lee Y. S., Pike V. W., Fast and high-yieldmicroreactor syntheses of ortho-substituted
  • [(18)F]fluoroarenesfrom reactions of
  • [(18)F]fluoride ion with diaryliodonium salts, JOrg Chem, 2010, 75, 3332-3338.
  • [29] McMullen J. P., Stone M. T., Buchwald S. L., Jensen K. F., Anintegrated microreactor system for self-optimization of a Heckreaction: from micro- to mesoscale flow systems, Angew ChemInt. Ed., 2010, 49, 7076-7080.[Crossref]
  • [30] Flogel O., Codee J. D., Seebach D., Seeberger P. H., Microreactorsynthesis of beta-peptides, Angew. Chem. Int. Ed., 2006, 45,7000-7003.[Crossref]
  • [31] Giovine A., Musio B., Degennaro L., Falcicchio A., NagakiA., Yoshida J., Luisi R., Synthesis of 1,2,3,4-tetrahydroisoquinolinesby microreactor-mediated thermal isomerizationof laterally lithiated arylaziridines, Chem. Eur. J., 2013, 19,1872-1876.
  • [32] Garcia-Egido E., Wong S. Y., Warrington B. H., A Hantzschsynthesis of 2-aminothiazoles performed in a heatedmicroreactor system, Lab Chip, 2002, 2, 31-33.[Crossref]
  • [33] Fukuyama T., Mukai Y., Ryu I., Koch-Haaf reaction ofadamantanols in an acid-tolerant hastelloy-made microreactor,Beilstein J Org Chem, 2011, 7, 1288-1293.[Crossref]
  • [34] Steinbacher J. L., McQuade D. T., Polymer chemistry in flow:New polymers, beads, capsules, and fibers, J. Polym. Sci. Pol.Chem., 2006, 44, 6505-6533.[Crossref]
  • [35] Kirschning A., Solodenko W., Mennecke K., Combiningenabling techniques in organic synthesis: Continuous flowprocesses with heterogenized catalysts, Chem. Eur. J., 2006,12, 5972-5990.[Crossref]
  • [36] Bally F., Serra C. A., Brochon C., Hadziioannou G., Synthesis ofbranched polymers under continuous-flow microprocess: Animprovement of the control of macromolecular architectures,Macromol. Rapid Comm., 2011, 32, 1820-1825.[Crossref]
  • [37] Lobry E., Jasinski F., Penconi M., Chemtob A., Croutxé-BarghornC., Oliveros E., Braun A. M., Criqui A., Continuous-flowsynthesis of polymer nanoparticles in a microreactor viaminiemulsion photopolymerization, RSC Adv., 2014, 4,43756-43759.
  • [38] Su Y., Straathof N. J. W., Hessel V., Noël T., Photochemicaltransformations accelerated in continuous-flow reactors:Basic concepts and applications, Chem. Eur. J., 2014, 20,10562-10589.[Crossref]
  • [39] Kolb G., Review: Microstructured reactors for distributed andrenewable production of fuels and electrical energy, Chem.Eng. Proc. Process Intensif., 2013, 65, 1-44.[Crossref]
  • [40] Ajmera S. K., Losey M. W., Jensen K. F., Schmidt M. A., Microfabricatedpacked-bed reactor for phosgene synthesis, AIChE J.,2001, 47, 1639-1647.[Crossref]
  • [41] Knapkiewicz P., Skowerski K., Jaskólska D. E., Barbasiewicz M.,Olszewski T. K., Nitration Under Continuous Flow Conditions:Convenient Synthesis of 2-Isopropoxy-5-nitrobenzaldehyde,an Important Building Block in the Preparation of Nitro-Substituted Hoveyda–Grubbs Metathesis Catalyst, Org.Process Res. Dev., 2012, 16, 1430-1435.
  • [42] Junior I. I., Flores M. C., Sutili F. K., Leite S. G. F., de M. MirandaL. S., Leal I. C. R., de Souza R. O. M. A., Lipase-CatalyzedMonostearin Synthesis under Continuous Flow Conditions, Org.Process Res. Dev., 2012, 16, 1098-1101.[Crossref]
  • [43] Hartman R. L., Jensen K. F., Microchemical systems forcontinuous-flow synthesis, Lab Chip, 2009, 9, 2495-2507.[Crossref]
  • [44] Commenge J. M., Falk L., Corriou J. P., Matlosz M., Analysis ofmicrostructured reactor characteristics for process miniaturizationand intensification, Chem. Eng. Technol., 2005, 28,446-458.[Crossref]
  • [45] Metwally H. M., Manglik R. M., Enhanced heat transfer due tocurvature-induced lateral vortices in laminar flows in sinusoidalcorrugated-plate channels, Int. J. Heat Mass Transfer, 2004, 47,2283-2292.
  • [46] Bird R. B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena,Revised 2nd Edition, 2007, John Wiley & Sons.
  • [47] Burns J. R., Ramshaw C., Development of a microreactor forchemical production, Chem. Eng. Res. Des., 1999, 77, 206-211.[Crossref]
  • [48] Gunther A., Jensen K. F., Multiphase microfluidics: from flowcharacteristics to chemical and materials synthesis, Lab Chip,2006, 6, 1487-1503.[Crossref]
  • [49] Danckwerts P. V., Continuous flow systems: Distribution ofresidence times, Chem. Eng. Sci., 1953, 2, 1-13.[Crossref]
  • [50] Fogler H. S., Elements of Chemical Reaction Engineering. 2005:Prentice Hall.
  • [51] Trachsel F., Günther A., Khan S., Jensen K. F., Measurement ofresidence time distribution in microfluidic systems, Chem. Eng.Sci., 2005, 60, 5729-5737.[Crossref]
  • [52] Lohse S., Kohnen B. T., Janasek D., Dittrich P. S., Franzke J.,Agar D. W., A novel method for determining residence timedistribution in intricately structured microreactors, Lab Chip,2008, 8, 431-438.[Crossref]
  • [53] Deshmukh S. R., Mhadeshwar A. B., Vlachos D. G.,Microreactor Modeling for Hydrogen Production from AmmoniaDecomposition on Ruthenium, Ind. Eng. Chem. Res., 2004, 43,2986-2999.[Crossref]
  • [54] Jovanovic G. N., Žnidaršič Plazl P., Sakrittichai P., Al-KhaldiK., Dechlorination of p-Chlorophenol in a Microreactor withBimetallic Pd/Fe Catalyst, Ind. Eng. Chem. Res., 2005, 44,5099-5106.[Crossref]
  • [55] Burkle-Vitzthum V., Moulis F., Zhang J., Commenge J.-M., SchaerE., Marquaire P.-M., Annular flow microreactor: An efficient toolfor kinetic studies in gas phase at very short residence times,Chem. Eng. Res. Des., 2015, 94, 611-623.[Crossref]
  • [56] Purday H. F. P., An introduction to the mechanics of viscousflow; film lubrication, the flow of heat by conduction and heattransfer by convection, 1949, Dover Publications.
  • [57] Hardt S., Microreactors – Modeling and Simulation, inUllmann’s Encyclopedia of Industrial Chemistry. 2011,Wiley-VCH Verlag GmbH & Co. KGaA.
  • [58] Tišma M., Zelić B., Vasić-Rački D., Žnidaršič-Plazl P., PlazlI., Modelling of laccase-catalyzed l-DOPA oxidation in amicroreactor, Chem. Eng. J., 2009, 149, 383-388.[Crossref]
  • [59] Levenspiel O., Chemical Reaction Engineering, 3rd Edition.1998: John Wiley & Sons.
  • [60] Nauman E. B., Chemical Reactor Design, Optimization, andScaleup, 4th Edition, 2008, John Wiley & Sons.
  • [61] Bošković D., Loebbecke S., Modelling of the residencetime distribution in micromixers, Chem. Eng. J., 2008, 135,Supplement 1, S138-S146.
  • [62] Aubin J., Prat L., Xuereb C., Gourdon C., Effect of microchannelaspect ratio on residence time distributions and the axialdispersion coefficient, Chem. Eng. Proc. Process Intensif.,2009, 48, 554-559.[Crossref]
  • [63] Schwolow S., Heikenwälder B., Abahmane L., Kockmann N.,Röder T., Kinetic and Scale-up Investigations of a MichaelAddition in Microreactors, Org. Process Res. Dev., 2014, 18,1535-1544.[Crossref]
  • [64] Islabão G. I. d., Pinto J. C. C. d. S., Vianna Júnior A. d. S.,Technological Trends in CFD Applications, J. Technol. Manage.Innov., 2010, 5, 76-83.
  • [65] Yamaguchi Y., Takagi F., Yamashita K., Nakamura H., MaedaH., Sotowa K., Kusakabe K., Yamasaki Y., Morooka S., 3-Dsimulation and visualization of laminar flow in a microchannelwith hair-pin curves, AIChE J., 2004, 50, 1530-1535.
  • [66] Li X., van der Steen G., van Dedem G. W. K., van der WielenL. A. M., van Leeuwen M., van Gulik W. M., Heijnen J. J.,Krommenhoek E. E., Gardeniers J. G. E., van den Berg A.,Ottens M., Improving mixing in microbioreactors, Chem. Eng.Sci., 2008, 63, 3036-3046.[Crossref]
  • [67] Sotowa K. I., Takagi K., Sugiyama S., Fluid flow behavior andthe rate of an enzyme reaction in deep microchannel reactorunder high-throughput condition, Chem. Eng. J., 2008, 135,S30-S36.
  • [68] Bodla V. K., Seerup R., Krühne U., Woodley J. M., Gernaey K. V.,Microreactors and CFD as Tools for Biocatalysis Reactor Design:A case study, Chem. Eng. Technol., 2013, 36, 1017-1026.[Crossref]
  • [69] Faires J. D., Burden R. L., Numerical Methods. 4th ed. 2012:Brooks Cole, Cengage Learning.
  • [70] Song H., Ismagilov R. F., Millisecond Kinetics on a MicrofluidicChip Using Nanoliters of Reagents, J.Am.Chem.Soc., 2003, 125,14613-14619.[Crossref]
  • [71] Baronas R., Ivanauskas F., Kulys J., Mathematical Modelingof Biosensors Based on an Array of Enzyme Microreactors,Sensors, 2006, 6, 453-465.[Crossref]
  • [72] Pallares J., Ferré J. A., A simple model to predict mass transferrates and kinetics of biochemical and biomedical Michaelis-Menten surface reactions, Int. J. Heat Mass Transfer, 2015, 80,192-198.
  • [73] Miyazaki M., Maeda H., Microchannel enzyme reactors andtheir applications for processing, Trends Biotechnol., 2006, 24,463-470.[Crossref]
  • [74] Tanaka Y., Slyadnev M. N., Hibara A., Tokeshi M., Kitamori T.,Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser, J. Chromatogr. A,2000, 894, 45-51.
  • [75] Slyadnev M. N., Tanaka Y., Tokeshi M., Kitamori T.,Photothermal temperature control of a chemical reaction on amicrochip using an infrared diode laser, Anal. Chem., 2001, 73,4037-4044.[Crossref]
  • [76] Maruyama T., Uchida J.-i., Ohkawa T., Futami T., Katayama K.,Nishizawa K.-i., Sotowa K.-i., Kubota F., Kamiya N., Goto M.,Enzymatic degradation of p-chlorophenol in a two-phase flowmicrochannel system, Lab Chip, 2003, 3, 308-312.[Crossref]
  • [77] Žnidaršič-Plazl P., Plazl I., Modelling and experimentalstudies on lipase-catalyzed isoamyl acetate synthesis in amicroreactor, Process Biochem., 2009, 44, 1115-1121.[Crossref]
  • [78] Žnidaršič-Plazl P., Pohar A., Plazl I. Theoretical andexperimental studies of enzyme-catalyzed isoamyl acetatesynthesis with ionic liquid at the microreactor scale. in Chem.Eng. Trans., 2009, 17, 1077-1082.
  • [79] Čech J., Schrott W., Slouka Z., Přibyl M., Brož M., KuncováG., Šnita D., Enzyme hydrolysis of soybean oil in a slug flowmicrosystem, Biochem. Eng. J., 2012, 67, 194-202.[Crossref]
  • [80] Sahoo H. R., Kralj J. G., Jensen K. F., Multistep continuous-flowmicrochemical synthesis involving multiple reactions andseparations, Angew. Chem. Int. Edit., 2007, 119, 5806-5810.[Crossref]
  • [81] Hartman R. L., Naber J. R., Buchwald S. L., Jensen K. F.,Multistep Microchemical Synthesis Enabled by MicrofluidicDistillation, Angew. Chem. Int. Edit., 2010, 49, 899-903.[Crossref]
  • [82] O’Sullivan B., Al-Bahrani H., Lawrence J., Campos M., CázaresA., Baganz F., Wohlgemuth R., Hailes H. C., Szita N., Modularmicrofluidic reactor and inline filtration system for thebiocatalytic synthesis of chiral metabolites, J. Mol. Catal. B:Enzym., 2012, 77, 1-8.[Crossref]
  • [83] Lawrence J., O’Sullivan B., Lye G. J., Wohlgemuth R., Szita N.,Microfluidic multi-input reactor for biocatalytic synthesis usingtransketolase, J. Mol. Catal. B: Enzym., 2013, 95, 111-117.[Crossref]
  • [84] Karande R., Schmid A., Buehler K., Miniaturizing biocatalysis:Enzyme-catalyzed reactions in an aqueous/organic segmentedflow capillary microreactor, Adv. Synth. Catal., 2011, 353,2511-2521.
  • [85] Tušek A., Šalić A., Kurtanjek Ž., Zelić B., Modeling and kineticparameter estimation of alcohol dehydrogenase-catalyzedhexanol oxidation in a microreactor, Eng. Life Sci., 2012, 12,49-56.[Crossref]
  • [86] Valinger D., Vrsalović Presečki A., Kurtanjek Ž., Pohl M., FindrikBlažević Z., Vasić-Rački D., Continuous enzymatic carboligationof benzaldehyde and acetaldehyde in an enzyme ultrafiltrationmembrane reactor and laminar flow microreactors, J. Mol.Catal. B: Enzym., 2014, 102, 132-137.[Crossref]
  • [87] Kanno K.-i., Maeda H., Izumo S., Ikuno M., Takeshita K., TashiroA., Fujii M., Rapid enzymatic transglycosylation and oligosaccharidesynthesis in a microchip reactor, Lab Chip, 2002, 2,15-18.[Crossref]
  • [88] Tušek A. J., Tišma M., Bregović V., Ptičar A., Kurtanjek Z., ZelićB., Enhancement of phenolic compounds oxidation usinglaccase from Trametes versicolor in a microreactor, Biotechnol.Bioprocess Eng., 2013, 18, 686-696.[Crossref]
  • [89] Tanaka Y., Slyadnev M. N., Sato K., Tokeshi M., Kim H. B.,Kitamori T., Acceleration of an enzymatic reaction in amicrochip, Anal. Sci., 2001, 17, 809-810.[Crossref]
  • [90] Miyazaki M., Nakamura H., Maeda H., Improved yield ofenzyme reaction in microchannel reactor, Chem. Lett., 2001,442-443.[Crossref]
  • [91] Matosevic S., Szita N., Baganz F., Fundamentals andapplications of immobilized microfluidic enzymatic reactors, J.Chem. Technol. Biotechnol., 2011, 86, 325-334.[Crossref]
  • [92] Hereijgers J., Desmet G., Breugelmans T., De Malsche W.,Strategies to integrate porous layers in microfluidic devices,Microelectron. Eng., 2015, 132, 1-13.[Crossref]
  • [93] Asanomi Y., Yamaguchi H., Miyazaki M., Maeda H., Enzymeimmobilizedmicrofluidic process reactors, Molecules, 2011,16, 6041-6059.[Crossref]
  • [94] Wong L. S., Khan F., Micklefield J., Selective covalent proteinimmobilization: Strategies and applications, Chem. Rev.,2009, 109, 4025-4053.[Crossref]
  • [95] Stojkovič G., Plazl I., Žnidaršič-Plazl P., L-Malic acidproduction within a microreactor with surface immobilisedfumarase, Microfluid. Nanofluid., 2011, 10, 627-635.[Crossref]
  • [96] Vojinović V., Esteves F. M. F., Cabral J. M. S., Fonseca L. P.,Bienzymatic analytical microreactors for glucose, lactate,ethanol, galactose and l-amino acid monitoring in cell culturemedia, Anal. Chim. Acta, 2006, 565, 240-249.
  • [97] Matosevic S., Lye G. J., Baganz F., Immobilised enzymemicroreactor for screening of multi-step bioconversions:Characterisation of a de novo transketolase-ω-transaminasepathway to synthesise chiral amino alcohols, J. Biotechnol.,2011, 155, 320-329.
  • [98] Ogończyk D., Jankowski P., Garstecki P., Functionalizationof polycarbonate with proteins; Open-tubular enzymaticmicroreactors, Lab Chip, 2012, 12, 2743-2748.[Crossref]
  • [99] Qu H., Wang H., Huang Y., Zhong W., Lu H., Kong J., Yang P., LiuB., Stable microstructured network for protein patterning ona plastic microfluidic channel: Strategy and characterizationof on-chip enzyme microreactors, Anal. Chem., 2004, 76,6426-6433.[Crossref]
  • [100] Křenková J., Bilková Z., Foret F., Characterization of amonolithic immobilized trypsin microreactor with on-linecoupling to ESI-MS, J. Sep. Sci., 2005, 28, 1675-1684.[Crossref]
  • [101] Cerqueira M. R. F., Grasseschi D., Matos R. C., Angnes L., Anovel functionalisation process for glucose oxidase immobilisationin poly(methyl methacrylate) microchannels in a flowsystem for amperometric determinations, Talanta, 2014, 126,20-26.[Crossref]
  • [102] Huang Y., Shan W., Liu B., Liu Y., Zhang Y., Zhao Y., Lu H., TangY., Yang P., Zeolite nanoparticle modified microchip reactor forefficient protein digestion, Lab. Chip, 2006, 6, 534-539.[Crossref]
  • [103] Ji J., Zhang Y., Zhou X., Kong J., Tang Y., Liu B., Enhancedprotein digestion through the confinement of nanozeoliteassembledmicrochip reactors, Anal. Chem., 2008, 80,2457-2463.[Crossref]
  • [104] Thomsen M. S., Nidetzky B., Microfluidic reactor forcontinuous flow biotransformations with immobilizedenzymes: The example of lactose hydrolysis by a hyperthermophilicβ-glycoside hydrolase, Eng. Life Sci., 2008, 8, 40-48.[Crossref]
  • [105] Jones F., Lu Z., Elmore B. B., Development of novel microscalesystem as immobilized enzyme bioreactor, Appl. Biochem.Biotechnol. A Enz. Eng. Biotechnol., 2002, 98-100, 627-640.
  • [106] Jones F., Forrest S., Palmer J., Lu Z., Elmore J., Elmore B. B.,Immobilized enzyme studies in a microscale bioreactor, Appl.Biochem. Biotechnol. A Enz. Eng. Biotechnol., 2004, 113,261-272.[Crossref]
  • [107] Dartiguenave C., Hamad H., Waldron K. C., Immobilization oftrypsin onto 1,4-diisothiocyanatobenzene-activated porousglass for microreactor-based peptide mapping by capillaryelectrophoresis: Effect of calcium ions on the immobilizationprocedure, Anal. Chim. Acta, 2010, 663, 198-205.
  • [108] Malecha K., Pijanowska D. G., Golonka L. J., Torbicz W., LTCCmicroreactor for urea determination in biological fluids, Sens.Actuators B, 2009, 141, 301-308.
  • [109] Alhadeff E. M., Salgado A. M., Cós O., Pereira Jr N., ValeroF., Valdman B., Integrated biosensor systems for ethanolanalysis, Appl. Biochem. Biotechnol., 2008, 146, 129-136.[Crossref]
  • [110] Seong G. H., Heo J., Crooks R. M., Measurement of enzymekinetics using a continuous-flow microfluidic system, Anal.Chem., 2003, 75, 3161-3167.[Crossref]
  • [111] Srinivasan A., Bach H., Sherman D. H., Dordick J. S., BacterialP450-catalyzed polyketide hydroxylation on a microfluidicplatform, Biotechnol. Bioeng., 2004, 88, 528-535.[Crossref]
  • [112] Baeza M., Lopez C., Alonso J., Lopez-Santin J., Alvaro G.,Ceramic microsystem incorporating a microreactor withimmobilized biocatalyst for enzymatic spectrophotometricassays, Anal Chem, 2010, 82, 1006-1011.[Crossref]
  • [113] Nomura A., Shin S., Mehdi O. O., Kauffmann J. M.,Preparation, characterization, and application of an enzymeimmobilizedmagnetic microreactor for flow injection analysis,Anal. Chem., 2004, 76, 5498-5502.[Crossref]
  • [114] Li Y., Xu X., Yan B., Deng C., Yu W., Yang P., Zhang X., Microchipreactor packed with metal-ion chelated magnetic silicamicrospheres for highly efficient proteolysis, J. Proteome Res.,2007, 6, 2367-2375.[Crossref]
  • [115] Liang R. P., Wang X. N., Liu C. M., Meng X. Y., Qiu J. D.,Construction of graphene oxide magnetic nanocompositesbasedon-chip enzymatic microreactor for ultrasensitivepesticide detection, J. Chromatogr. A, 2013, 1315, 28-35.
  • [116] Ngamsom B., Hickey A. M., Greenway G. M., Littlechild J.A., Watts P., Wiles C., Development of a high throughputscreening tool for biotransformations utilising a thermophilicl-aminoacylase enzyme, J. Mol. Catal. B: Enzym., 2010, 63,81-86.[Crossref]
  • [117] Ma J., Liang Z., Qiao X., Deng Q., Tao D., Zhang L., Zhang Y.,Organic-inorganic hybrid silica monolith based immobilizedtrypsin reactor with high enzymatic activity, Anal. Chem.,2008, 80, 2949-2956.[Crossref]
  • [118] Chen Y., Wu M., Wang K., Chen B., Yao S., Zou H., Nie L.,Vinyl functionalized silica hybrid monolith-based trypsinmicroreactor for on line digestion and separation via thiol-ene“click” strategy, J. Chromatogr. A, 2011, 1218, 7982-7988.
  • [119] Mersal G. A. M., Bilitewski U., Development of monolithicenzymatic reactors in glass microchips for the quantitativedetermination of enzyme substrates using the example ofglucose determination via immobilized glucose oxidase,Electrophoresis, 2005, 26, 2303-2312.[Crossref]
  • [120] Feng S., Ye M., Jiang X., Jin W., Zou H., Coupling theimmobilized trypsin microreactor of monolithic capillary withμRPLC-MS/MS for shotgun proteome analysis, J. ProteomeRes., 2006, 5, 422-428.[Crossref]
  • [121] Rios G. M., Belleville M. P., Paolucci D., Sanchez J., Progressin enzymatic membrane reactors - A review, J. Membrane Sci.,2004, 242, 189-196.
  • [122] Machsun A. L., Gozan M., Nasikin M., Setyahadi S., Yoo Y. J.,Membrane microreactor in biocatalytic transesterification oftriolein for biodiesel production, Biotechnol. Bioprocess Eng.,2010, 15, 911-916.[Crossref]
  • [123] Iqbal J., Iqbal S., Müller C. E., Advances in immobilizedenzyme microbioreactors in capillary electrophoresis, Analyst,2013, 138, 3104-3116.[Crossref]
  • [124] Wang X., Li K., Adams E., Schepdael A. V., Recent advances inCE-mediated microanalysis for enzyme study, Electrophoresis,2014, 35, 119-127.[Crossref]
  • [125] Schoenherr R. M., Ye M., Vannatta M., Dovichi N. J.,CE-microreactor-CE-MS/MS for protein analysis, Anal. Chem.,2007, 79, 2230-2238.[Crossref]
  • [126] Li Y., Wojcik R., Dovichi N. J., A replaceable microreactor foron-line protein digestion in a two-dimensional capillaryelectrophoresis system with tandem mass spectrometrydetection, J. Chromatogr. A, 2011, 1218, 2007-2011.
  • [127] Yu D., Van Antwerpen P., Patris S., Blankert B., Kauffmann J.M., Enzyme immobilized magnetic nanoparticles for in-linecapillary electrophoresis and drug biotransformation studies:Application to paracetamol, Comb. Chem. High T. Scr., 2010,13, 455-460.
  • [128] Iqbal J., An enzyme immobilized microassay in capillaryelectrophoresis for characterization and inhibition studies ofalkaline phosphatases, Anal. Biochem., 2011, 414, 226-231.
  • [129] Jiang T. F., Liang T. T., Wang Y. H., Zhang W. H., Lv Z. H.,Immobilized capillary tyrosinase microreactor for inhibitorscreening in natural extracts by capillary electrophoresis, J.Pharm. Biomed. Anal., 2013, 84, 36-40.[Crossref]
  • [130] Simonet B. M., Ríos A., Valcárcel M., Analytical potential ofenzyme-coated capillary reactors in capillary zone electrophoresis,Electrophoresis, 2004, 25, 50-56.[Crossref]
  • [131] Yang L., Shi J., Chen C., Wang S., Zhu L., Xie W., Guo L.,Dual-enzyme, co-immobilized capillary microreactorcombined with substrate recycling for high-sensitiveglutamate determination based on CE, Electrophoresis, 2009,30, 3527-3533.[Crossref]
  • [132] Bolivar J. M., Consolati T., Mayr T., Nidetzky B., Shine alight on immobilized enzymes: Real-time sensing in solidsupported biocatalysts, Trends Biotechnol., 2013, 31,194-203.[Crossref]
  • [133] Stich M. I. J., Fischer L. H., Wolfbeis O. S., Multiple fluorescentchemical sensing and imaging, Chem. Soc. Rev., 2010, 39,3102-3114.[Crossref]
  • [134] Bolivar J. M., Eisl I., Nidetzky B., Advanced characterization ofimmobilized enzymes as heterogeneous biocatalysts, Catal.Today, 2016, 259, Part 1, 66-80.
  • [135] Honda T., Miyazaki M., Nakamura H., Maeda H., Facilepreparation of an enzyme-immobilized microreactor using across-linking enzyme membrane on a microchannel surface,Adv. Synth. Catal., 2006, 348, 2163-2171.
  • [136] Schilke K. F., Wilson K. L., Cantrell T., Corti G., McIlroy D. N.,Kelly C., A novel enzymatic microreactor with Aspergillusoryzae β-galactosidase immobilized on silicon dioxidenanosprings, Biotechnol. Progress, 2010, 26, 1597-1605.[Crossref]
  • [137] Song Y. S., Shin H. Y., Lee J. Y., Park C., Kim S. W.,β-Galactosidase-immobilised microreactor fabricated using anovel technique for enzyme immobilisation and its applicationfor continuous synthesis of lactulose, Food Chem., 2012, 133,611-617.[Crossref]
  • [138] Schwarz A., Thomsen M. S., Nidetzky B., Enzymatic synthesisof β-glucosylglycerol using a continuous-flow microreactorcontaining thermostable β-glycoside hydrolase celBimmobilized on coated microchannel walls, Biotechnol.Bioeng., 2009, 103, 865-872.[Crossref]
  • [139] Thomsen M. S., Nidetzky B., Coated-wall microreactor forcontinuous biocatalytic transformations using immobilizedenzymes, Biotechnol. J., 2009, 4, 98-107.
  • [140] Drott J., Lindström K., Rosengren L., Laurell T., Porous siliconas the carrier matrix in microstructured enzyme reactorsyielding high enzyme activities, J. Micromech. Microeng.,1997, 7, 14-23.[Crossref]
  • [141] Bengtsson M., Ekström S., Marko-Varga G., Laurell T.,Improved performance in silicon enzyme microreactorsobtained by homogeneous porous silicon carrier matrix,Talanta, 2002, 56, 341-353.[Crossref]
  • [142] Cumana S., Simons J., Liese A., Hilterhaus L., Smirnova I.,Immobilization of glucose 6-phosphate dehydrogenase insilica-based hydrogels: A comparative study, J. Mol. Catal. B:Enzym., 2013, 85-86, 220-228.
  • [143] Cumana S., Ardao I., Zeng A. P., Smirnova I., Glucose-6-phosphate dehydrogenase encapsulated in silica-basedhydrogels for operation in a microreactor, Eng. Life Sci., 2014,14, 170-179.
  • [144] Szymańska K., Pudło W., Mrowiec-Białoń J., CzardybonA., Kocurek J., Jarzȩbski A. B., Immobilization of invertaseon silica monoliths with hierarchical pore structure toobtain continuous flow enzymatic microreactors of highperformance, Micropor. Mesopor. Mat., 2013, 170, 75-82.
  • [145] Lloret L., Eibes G., Moreira M. T., Feijoo G., Lema J. M.,Miyazaki M., Improving the catalytic performance of laccaseusing a novel continuous-flow microreactor, Chem. Eng. J.,2013, 223, 497-506.
  • [146] Tuan Anuar S., Villegas C., Mugo S. M., Curtis J. M., Thedevelopment of flow-through bio-catalyst microreactors fromsilica micro structured fibers for lipid transformations, Lipids,2011, 46, 545-555.[Crossref]
  • [147] Mugo S. M., Ayton K., Lipase immobilized microstructuredfiber based flow-through microreactor for facile lipid transformations,J. Mol. Catal. B: Enzym., 2010, 67, 202-207.[Crossref]
  • [148] Anuar S. T., Zhao Y. Y., Mugo S. M., Curtis J. M., Thedevelopment of a capillary microreactor for transesterificationreactions using lipase immobilized onto a silica monolith, J.Mol. Catal. B: Enzym., 2013, 92, 62-70.[Crossref]
  • [149] Kaneno J., Kohama R., Miyazaki M., Uehara M., Kanno K.,Fujii M., Shimizu H., Maeda H., Development of surfacemodification method and its application for preparation ofenzyme-immobilized microreactor, Kagaku Kogaku Ronbun.,2004, 30, 154-158.[Crossref]
  • [150] Bhangale A. S., Beers K. L., Gross R. A., Enzyme-catalyzedpolymerization of end-functionalized polymers in amicroreactor, Macromolecules, 2012, 45, 7000-7008.[Crossref]
  • [151] Denčić I., De Vaan S., Noël T., Meuldijk J., De Croon M., HesselV., Lipase-based biocatalytic flow process in a packed-bedmicroreactor, Ind. Eng. Chem. Res., 2013, 52, 10951-10960.[Crossref]
  • [152] Forrest S. R., Elmore B. B., Palmer J. D., Activity and lifetime oforganophosphorous hydrolase (OPH) immobilized using layerby-layer nano self-assembly on silicon microchannels, Catal.Today, 2007, 120, 30-34.[Crossref]
  • [153] Tudorache M., Mahalu D., Teodorescu C., Stan R., Bala C.,Parvulescu V. I., Biocatalytic microreactor incorporatingHRP anchored on micro-/nano-lithographic patterns forflow oxidation of phenols, J. Mol. Catal. B: Enzym., 2011, 69,133-139.[Crossref]
  • [154] Abdul Halim A., Szita N., Baganz F., Characterization andmulti-step transketolase-ω-transaminase bioconversions inan immobilized enzyme microreactor (IEMR) with packed tube,J. Biotechnol., 2013, 168, 567-575.
  • [155] Matosevic S., Lye G. J., Baganz F., Design and characterizationof a prototype enzyme microreactor: Quantificationof immobilized transketolase kinetics, Biotechnol. Progress,2010, 26, 118-126.
  • [156] Fu H., Dencic I., Tibhe J., Sanchez Pedraza C. A., Wang Q.,Noel T., Meuldijk J., de Croon M., Hessel V., Weizenmann N.,Oeser T., Kinkeade T., Hyatt D., Van Roy S., Dejonghe W., DielsL., Threonine aldolase immobilization on different supportsfor engineering of productive, cost-efficient enzymaticmicroreactors, Chem. Eng. J., 2012, 207-208, 564-576.
  • [157] Ye M., Hu S., Schoenherr R. M., Dovichi N. J., On-line proteindigestion and peptide mapping by capillary electrophoresis with post-column labeling for laser-induced flourescencedetection, Electrophoresis, 2004, 25, 1319-1326.[Crossref]
  • [158] Elmore B., Besser R., Lu Z., Forrest A., Jiang R., Jones F. Heterogeneouscatalysis in a micro scale reactor fabricated froma biologically active polymer. in Proceedings of SPIE - TheInternational Society for Optical Engineering. 2001.
  • [159] Tang X., Liu S., Wang S., Zhang Q., Cheng Z., Preparation ofreversibly immobilized Jack bean urease on microchannelsurface and application for enzyme inhibition assay,Microfluid. Nanofluid., 2014, 17, 721-728.[Crossref]
  • [160] Malecha K., Pijanowska D., Golonka L., Torbicz W., LTCCenzymatic microreactor, J. Microelectron.Electron. Packag.,2007, 4, 51-56.[Crossref]
  • [161] Łukowska E., Pijanowska D., Chwojnowski A., A new polymericsupport for enzyme immobilization for biomicroreactors, Pol.J. Chem., 2008, 82, 1265-1272.
  • [162] Bolivar J. M., Nidetzky B., Smart enzyme immobilization inmicrostructured reactors, Chim. Oggi, 2013, 31, 50-54.
  • [163] Bolivar J. M., Wiesbauer J., Nidetzky B., Biotransformations inmicrostructured reactors: more than flowing with the stream?,Trends Biotechnol., 2011, 29, 333-342.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_boca-2015-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.