Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Fungal laccases as tools for biodegradation of
industrial dyes


Title variants

Languages of publication



Laccases are blue copper oxidases, found in
some plants and secreted by a wide range of ligninolytic
fungi. These enzymes are well known for their ability in
oxidizing several organic compounds, mainly phenolics
and aromatic amines, at the expenses of molecular
oxygen. Therefore, they could find application in the
field of enzymatic bioremediation of many industrial
wastewaters, and in particular to bleach and/or detoxify
dye-containing effluents. Not all industrial dyes behave as
laccase substrates, but this limitation is often overcome
by the judicious use of redox mediators. These could
substantially widen the application range of laccases as
bioremediation tools. The present study encompasses
the main properties of the most used industrial dyes as
related to their chemical classification, fungal laccases
and their molecular and catalytic features, the use of
redox mediators, limitations and perspectives of the use
of fungal laccases for industrial dye bleaching.








Physical description


20 - 1 - 2016
28 - 7 - 2015
5 - 10 - 2015


  • Dipartimento di
    Scienze Biomediche, Università di Cagliari, Cagliari, Italy
  • Consorzio UNO, Oristano, Italy
  • Dipartimento di
    Scienze Biomediche, Università di Cagliari, Cagliari, Italy
  • Dipartimento di
    Scienze Biomediche, Università di Cagliari, Cagliari, Italy
  • Unità di Biochimica,
    Dipartimento di Scienze Biomediche, Complesso Universitario,
    09042 Monserrato (CA) Italy


  • [1] Yoshida H., LXIII.-Chemistry of lacquer (Urushi). Part I.Communication from the Chemical Society of Tokio, Journal ofthe Chemical Society, Transactions, 1883, 43, 472-486.
  • [2] Cambie R.C., Bocks S.M., A p-diphenol oxidase fromgymnosperms, Phytochemistry, 1966, 5, 391-396.[Crossref]
  • [3] Joel D.M., Marbach I., Mayer A.M., Laccase in Anacardiaceae,Phytochemistry, 1978, 17, 796-797.[Crossref]
  • [4] Claus H., Laccases and their occurrence in prokaryotes, Arch.Microbiol., 2003, 179, 145-150.
  • [5] Ander P., Eriksson K.E., The importance of phenol oxidaseactivity in lignin degradation by the white-rot fungusSporotrichum pulverulentum, Arch. Microbiol., 1976, 109, 1-8.[Crossref]
  • [6] Baldrian P., Fungal laccases-occurrence and properties, FEMSMicrobiol. Rev., 2006, 30, 215-242.[Crossref]
  • [7] Elisashvili V., Kachlishvili E., Physiological regulation of laccaseand manganese peroxidase production by white-rot Basidiomycetes,Journal of Biotechnology, 2009, 144, 37-42.
  • [8] Wu J.Q., Wen J.L., Yuan T.Q., Sun R.C., Integratedhot-compressed water and laccase-mediator treatments ofEucalyptus grandis fibers: Structural changes of fiber andlignin, Journal of Agricultural and Food Chemistry, 2015, 63,1763-1772.
  • [9] Munk L., Sitarz A.K., Kalyani D.C., Mikkelsen J.D., Meyer A.S.,Can laccases catalyze bond cleavage in lignin?, Biotechnol.Adv., 2015, 33, 13-24.[Crossref]
  • [10] Heap L., Green A., Brown D., Van Dongen B., Turner N., Roleof laccase as an enzymatic pretreatment method to improvelignocellulosic saccharification, Catalysis Science andTechnology, 2014, 4, 2251-2259.
  • [11] Ryu S.H., Cho M.K., Kim M., Jung S.M., Seo J.H., Enhancedlignin biodegradation by a laccase-overexpressed white-rotfungus Polyporus brumalis in the pretreatment of wood chips,Appl. Biochem. Biotechnol., 2013, 171, 1525-1534.
  • [12] Chen Q., Marshall M.N., Geib S.M., Tien M., Richard T.L., Effectsof laccase on lignin depolymerization and enzymatic hydrolysisof ensiled corn stover, Bioresour. Technol., 2012, 117, 186-192.[Crossref]
  • [13] Virk A.P., Sharma P., Capalash N., Use of laccase in pulp andpaper industry, Biotechnol. Prog., 2012, 28, 21-32.[Crossref]
  • [14] Piscitelli A., Del Vecchio C., Faraco V., Giardina P., MacEllaro G.,Miele A., Pezzella C., Sannia G., Fungal laccases: Versatile toolsfor lignocellulose transformation, Comptes Rendus - Biologies,2011, 334, 789-794.
  • [15] Leonowicz A., Cho N., Luterek J., Wilkolazka A., Wojtas-Wasilewska M., Matuszewska A., Hofrichter M., Wesenberg D.,Rogalski J., Fungal laccase: Properties and activity on lignin, J.Basic Microbiol., 2001, 41, 185-227.[Crossref]
  • [16] Eggert C., Temp U., Eriksson K.E.L., Laccase is essentialfor lignin degradation by the white-rot fungus Pycnoporuscinnabarinus, FEBS Lett., 1997, 407, 89-92.
  • [17] Zucca P., Rescigno A., Rinaldi A.C., Sanjust E., Biomimeticmetalloporphines and metalloporphyrins as potential toolsfor delignification: Molecular mechanisms and applicationperspectives, J. Mol. Catal. A: Chem., 2014, 388-389, 2-34.
  • [18] Laufer Z., Beckett R.P., Minibayeva F.V., Co-occurrence of theMulticopper Oxidases Tyrosinase and Laccase in Lichens inSub-order Peltigerineae, Ann. Bot., 2006, 98, 1035-1042.[Crossref]
  • [19] Farver O., Pecht I., Electron transfer in blue copper proteins,Coord. Chem. Rev., 2011, 255, 757-773.
  • [20] Asthana S., Zucca P., Vargiu A.V., Sanjust E., Ruggerone P.,Rescigno A., Structure-Activity Relationship Study of Hydroxycoumarinsand Mushroom Tyrosinase, Journal of Agriculturaland Food Chemistry, 2015, 63, 7236-7244.
  • [21] Zucca P., Sanjust E., Loi M., Sollai F., Ballero M., Pintus M.,Rescigno A., Isolation and characterization of polyphenoloxidase from Sardinian poisonous and non-poisonouschemotypes of Ferula communis (L.), Phytochemistry, 2013, 90,16-24.[Crossref]
  • [22] Rescigno A., Casañola-Martin G.M., Sanjust E., Zucca P.,Marrero-Ponce Y., Vanilloid Derivatives as Tyrosinase InhibitorsDriven by Virtual Screening-Based QSAR Models, Drug Testingand Analysis, 2011, 3, 176-181.
  • [23] Pardo I., Camarero S., Laccase engineering by rational andevolutionary design, Cellular and Molecular Life Sciences,2015, 72, 897-910.
  • [24] Sakurai T., Kataoka K., Structure and function of type I copperin multicopper oxidases, Cellular and Molecular Life Sciences,2007, 64, 2642-2656.
  • [25] Hall J.F., Kanbi L.D., Strange R.W., Hasnain S.S., Role of theaxial ligand in type 1 Cu centers studied by point mutations ofMet148 in rusticyanin, Biochemistry, 1999, 38, 12675-12680.
  • [26] Xu F., Berka R.M., Wahleithner J.A., Nelson B.A., Shuster J.R.,Brown S.H., Palmer A.E., Solomon E.I., Site-directed mutationsin fungal laccase: Effect on redox potential, activity and pHprofile, Biochemical Journal, 1998, 334, 63-70.
  • [27] Xu F., Palmer A.E., Yaver D.S., Berka R.M., Gambetta G.A.,Brown S.H., Solomon E.I., Targeted mutations in a Trametesvillosa laccase: Axial perturbations of the T1 copper, J. Biol.Chem., 1999, 274, 12372-12375.
  • [28] Miura Y., Tsujimura S., Kurose S., Kamitaka Y., Kataoka K.,Sakurai T., Kano K., Direct Electrochemistry of CueO and ItsMutants at Residues to and Near Type I Cu for Oxygen-ReducingBiocathode, Fuel Cells, 2009, 9, 70-78.[Crossref]
  • [29] Durão P., Bento I., Fernandes A.T., Melo E.P., Lindley P.F.,Martins L.O., Perturbations of the T1 copper site in the CotAlaccase from Bacillus subtilis: Structural, biochemical,enzymatic and stability studies, J. Biol. Inorg. Chem., 2006, 11,514-526.
  • [30] Piontek K., Antorini M., Choinowski T., Crystal structureof a laccase from the fungus Trametes versicolor at 1.90-Åresolution containing a full complement of coppers, J. Biol.Chem., 2002, 277, 37663-37669.
  • [31] Hong G., Ivnitski D.M., Johnson G.R., Atanassov P., Pachter R.,Design parameters for tuning the type 1 Cu multicopper oxidaseredox potential: Insight from a combination of first principlesand empirical molecular dynamics simulations, J. Am. Chem.Soc., 2011, 133, 4802-4809.
  • [32] Yoon J., Solomon E.I., Electronic structure of the peroxyintermediate and its correlation to the native intermediate inthe multicopper oxidases: Insights into the reductive cleavageof the O-O bond, J. Am. Chem. Soc., 2007, 129, 13127-13136.
  • [33] Messerschmidt A., Multi-copper oxidases, World Scientific,1997.
  • [34] Baldrian P., Fungal laccases - occurrence and properties., FEMSMicrobiol. Rev., 2006, 30, 215-242.[Crossref]
  • [35] Munoz C., Guillén F., Martinez A., Martínez M., Laccaseisoenzymes of Pleurotus eryngii: characterization, catalyticproperties, and participation in activation of molecular oxygenand Mn2+ oxidation, Appl. Environ. Microbiol., 1997, 63,2166-2174.
  • [36] Zucca P., Rescigno A., Olianas A., MacCioni S., Sollai F.A.,Sanjust E., Induction, purification, and characterization of alaccase isozyme from Pleurotus sajor-caju and the potential indecolorization of textile dyes, Journal of Molecular Catalysis B:Enzymatic, 2011, 68, 216-222.[Crossref]
  • [37] Leonowicz A., Trojanoeski J., Induction of a new laccase fromthe fungus Pleurotus ostreatus by ferulic acid, Microbios, 1975,13, 167-174.
  • [38] Rogalski J., Lundell T.K., Leonowicz A., Hatakka A.I., Influenceof aromatic compounds and lignin on production of ligninolyticenzymes by Phlebia radiata, Phytochemistry, 1991, 30,2869-2872.[Crossref]
  • [39] Ardon O., Kerem Z., Hadar Y., Enhancement of laccase activityin liquid cultures of the ligninolytic fungus Pleurotus ostreatusby cotton stalk extract, Journal of Biotechnology, 1996, 51,201-207.
  • [40] Pozdnyakova N.N., Nikiforova S.V., Makarov O.E., TurkovskayaO.V., Effect of polycyclic aromatic hydrocarbons on laccaseproduction by white rot fungus Pleurotus ostreatus D1, AppliedBiochemistry and Microbiology, 2011, 47, 543-548.
  • [41] Karp S.G., Faraco V., Amore A., Letti L.A.J., Thomaz Soccol V.,Soccol C.R., Statistical optimization of laccase production anddelignification of sugarcane bagasse by Pleurotus ostreatus insolid-state fermentation, BioMed Research International, 2015,2015.
  • [42] Fonseca M.I., Shimizu E., Zapata P.D., Villalba L.L., Copperinducing effect on laccase production of white rot fungi nativefrom Misiones (Argentina), Enzyme and Microbial Technology,2010, 46, 534-539.
  • [43] Baldrian P., Gabriel J., Copper and cadmium increase laccaseactivity in Pleurotus ostreatus, FEMS Microbiology Letters,2002, 206, 69-74.
  • [44] Nakade K., Nakagawa Y., Yano A., Konno N., Sato T., SakamotoY., Effective induction of pblac1 laccase by copper ion inPolyporus brumalis ibrc05015, Fungal Biology, 2013, 117, 52-61.
  • [45] Khammuang S., Yuwa-amornpitak T., Svasti J., Sarnthima R.,Copper induction of laccases by Lentinus polychrous underliquid-state fermentation, Biocatalysis and AgriculturalBiotechnology, 2013, 2, 357-362.
  • [46] Yaropolov A.I., Skorobogat’ko O.V., Vartanov S.S., VarfolomeyevS.D., Laccase - Properties, catalytic mechanism, andapplicability, Appl. Biochem. Biotechnol., 1994, 49, 257-280.[Crossref]
  • [47] Jones S.M., Solomon E.I., Electron transfer and reactionmechanism of laccases, Cellular and Molecular Life Sciences,2015.
  • [48] Solomon E.I., Sundaram U.M., Machonkic T.E., MulticopperOxidases and Oxygenases, Chem. Rev. (Washington, DC, U. S.),1996, 96, 2563-2605.[Crossref]
  • [49] Mayer A.M., Staples R.C., Laccase: new functions for an oldenzyme, Phytochemistry (Elsevier), 2002, 60, 551-565.[Crossref]
  • [50] Thurston C.F., The structure and function of fungal laccases,Microbiology, 1994, 140, 19-26.[Crossref]
  • [51] Guillén F., Muñoz C., Gómez-Toribio V., Martínez A.T., MartínezM.J., Oxygen activation during oxidation of methoxyhydroquinonesby laccase from Pleurotus eryngii, Appl. Environ.Microbiol., 2000, 66, 170-175.[Crossref]
  • [52] Bruyneel F., Dive G., Marchand-Brynaert J., Non-symmetricallysubstituted phenoxazinones from laccase-mediated oxidativecross-coupling of aminophenols: An experimental andtheoretical insight, Organic and Biomolecular Chemistry, 2012,10, 1834-1846.
  • [53] Bertrand T., Jolivalt C., Briozzo P., Caminade E., Joly N.,Madzak C., Mougin C., Crystal structure of a four-copperlaccase complexed with an arylamine: Insights into substraterecognition and correlation with kinetics, Biochemistry, 2002,41, 7325-7333.[Crossref]
  • [54] Witayakran S., Ragauskas A.J., Synthetic Applications ofLaccase in Green Chemistry, Adv. Synth. Catal., 2009, 351,1187-1209.
  • [55] Gierer J., Chemistry of delignification, Wood Sci. Technol.,1986, 20, 1-33.[Crossref]
  • [56] Alcalde M., Laccases: Biological functions, molecular structureand industrial applications, in: Industrial Enzymes: Structure,Function and Applications, 2007, pp. 461-476.
  • [57] Kawai S., Umezawa T., Higuchi T., Oxidation of MethoxylatedBenzyl Alcohols by Laccase of Coriolus versicolor in thePresence of Syringaldehyde, Wood research: bulletin of theWood Research Institute Kyoto University, 1989, 76, 10-16.
  • [58] Bourbonnais R., Paice M.G., Oxidation of non-phenolicsubstrates. An expanded role for laccase in ligninbiodegradation, FEBS Lett., 1990, 267, 99-102.
  • [59] Call H.P., Mücke I., History, overview and applications ofmediated lignolytic systems, especially laccase-mediatorsystems(Lignozym®-process), J. Biotechnol., 1997, 53,163-202.
  • [60] Cañas A.I., Camarero S., Laccases and their natural mediators:Biotechnological tools for sustainable eco-friendly processes,Biotechnol. Adv., 2010, 28, 694-705.[Crossref]
  • [61] Johannes C., Majcherczyk A., Natural mediators in the oxidationof polycyclic aromatic hydrocarbons by laccase mediatorsystems, Appl. Environ. Microbiol., 2000, 66, 524-528.[Crossref]
  • [62] Maruyama T., Komatsu C., Michizoe J., Sakai S., Goto M.,Laccase-mediated degradation and reduction of toxicity of thepostharvest fungicide imazalil, Process Biochem., 2007, 42,459-461.[Crossref]
  • [63] Camarero S., Ibarra D., Martínez M.J., Martínez Á.T., Ligninderivedcompounds as efficient laccase mediators fordecolorization of different types of recalcitrant dyes, Appl.Environ. Microbiol., 2005, 71, 1775-1784.[Crossref]
  • [64] Dubé E., Shareck F., Hurtubise Y., Beauregard M., DaneaultC., Decolourization of recalcitrant dyes with a laccase fromStreptomyces coelicolor under alkaline conditions, Journalof Industrial Microbiology and Biotechnology, 2008, 35,1123-1129.
  • [65] Murugesan K., Yang I.H., Kim Y.M., Jeon J.R., Chang Y.S.,Enhanced transformation of malachite green by laccase ofGanoderma lucidum in the presence of natural phenoliccompounds Appl. Microbiol. Biotechnol., 2009, 82, 341-350.[Crossref]
  • [66] Eggert C., Temp U., Dean J.F.D., Eriksson K.E.L., A fungalmetabolite mediates degradation of non-phenolic ligninstructures and synthetic lignin by laccase, FEBS Lett., 1996,391, 144-148.
  • [67] D’Acunzo F., Galli C., Gentili P., Sergi F., Mechanistic andsteric issues in the oxidation of phenolic and non-phenoliccompounds by laccase or laccase-mediator systems. the caseof bifunctional substrates, New J. Chem., 2006, 30, 583-591.[Crossref]
  • [68] Tojo G., Fernández M., Activated Dimethyl Sulfoxide, Oxidationof Alcohols to Aldehydes and Ketones: A Guide to CurrentCommon Practice, 2006, 97-179.
  • [69] Kubala D., Regeta K., Janečková R., Fedor J., Grimme S., HansenA., Nesvadba P., Allan M., The electronic structure of TEMPO, itscation and anion, Mol. Phys., 2013, 111, 2033-2040.[Crossref]
  • [70] Mendoza L., Jonstrup M., Hatti-Kaul R., Mattiasson B., Azo dyedecolorization by a laccase/mediator system in a membranereactor: Enzyme and mediator reusability, Enzyme andMicrobial Technology, 2011, 49, 478-484.
  • [71] Shiraishi T., Sannami Y., Kamitakahara H., Takano T.,Comparison of a series of laccase mediators in the electrooxidationreactions of non-phenolic lignin model compounds,Electrochim. Acta, 2013, 106, 440-446.[Crossref]
  • [72] Astolti P., Brandi P., Galli C., Gentili P., Gerini M.F., GreciL., Lanzalunga O., New mediators for the enzyme laccase:Mechanistic features and selectivity in the oxidation ofnon-phenolic substrates, New J. Chem., 2005, 29, 1308-1317.[Crossref]
  • [73] D’Acunzo F., Galli C., First evidence of catalytic mediationby phenolic compounds in the laccase-induced oxidation oflignin models, European Journal of Biochemistry, 2003, 270,3634-3640.
  • [74] Cantarella G., Galli C., Gentili P., Free radical versus electrontransferroutes of oxidation of hydrocarbons by laccase/mediator systems: Catalytic or stoichiometric procedures,Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 135-144.[Crossref]
  • [75] Calcaterra A., Galli C., Gentili P., Phenolic compounds as likelynatural mediators of laccase: A mechanistic assessment,Journal of Molecular Catalysis B: Enzymatic, 2008, 51, 118-120.[Crossref]
  • [76] Cañas A.I., Alcalde M., Plou F., Martínez M.J., MartínezÁ.T., Camarero S., Transformation of polycyclic aromatichydrocarbons by laccase is strongly enhanced by phenoliccompounds present in soil, Environ. Sci. Technol., 2007, 41,2964-2971.[Crossref]
  • [77] Jeon J.R., Murugesan K., Kim Y.M., Kim E.J., Chang Y.S.,Synergistic effect of laccase mediators on pentachlorophenolremoval by Ganoderma lucidum laccase, Applied Microbiologyand Biotechnology, 2008, 81, 783-790.
  • [78] Pickard M.A., Roman R., Tinoco R., Vazquez-Duhalt R.,Polycyclic aromatic hydrocarbon metabolism by white rot fungiand oxidation by Coriolopsis gallica UAMH 8260 laccase, Appl.Environ. Microbiol., 1999, 65, 3805-3809.
  • [79] Banat I.M., Nigam P., Singh D., Marchant R., Microbial decolorizationof textile-dye-containing effluents: A review, Bioresour.Technol., 1996, 58, 217-227.[Crossref]
  • [80] Forgacs E., Cserháti T., Oros G., Removal of synthetic dyes fromwastewaters: a review, Environ. Int., 2004, 30, 953-971.[Crossref]
  • [81] Pierce J., Colour in textile effluents - the origins of the problem,J. Soc. Dyers Colour., 1994, 110, pp 131-133.
  • [82] Dasgupta J., Sikder J., Chakraborty S., Curcio S., Drioli E.,Remediation of textile effluents by membrane based treatmenttechniques: A state of the art review, J. Environ. Manag., 2015,147, 55-72.
  • [83] Vajnhandl S., Valh J.V., The status of water reuse in Europeantextile sector, J. Environ. Manag., 2014, 141, 29-35.[Crossref]
  • [84] Chiavola A., Textiles, Water Environ. Res., 2012, 84, 1511-1532.[Crossref]
  • [85] McMullan G., Meehan C., Conneely A., Kirby N., RobinsonT., Nigam P., Banat I.M., Marchant R., Smyth W.F., Microbialdecolourisation and degradation of textile dyes, AppliedMicrobiology and Biotechnology, 2001, 56, 81-87.
  • [86] Zucca P., Rescigno A., Pintus M., Rinaldi A.C., SanjustE., Degradation of textile dyes using immobilized ligninperoxidase-like metalloporphines under mild experimentalconditions, Chemistry Central Journal, 2012, 6.
  • [87] Karthik V., Saravanan K., Bharathi P., Dharanya V., MeiarajC., An overview of treatments for the removal of textile dyes,Journal of Chemical and Pharmaceutical Sciences, 2014, 7,301-307.
  • [88] Karthik V., Saravanan K., Thomas T., Devi M., Review onmicrobial decolourisation of textile dyes, Journal of Chemicaland Pharmaceutical Sciences, 2014, 7, 293-300.
  • [89] Muhd Julkapli N., Bagheri S., Bee Abd Hamid S., Recentadvances in heterogeneous photocatalytic decolorization ofsynthetic dyes, Scientific World Journal, 2014, 2014.
  • [90] Türgay O., Ersöz G., Atalay S., Forss J., Welander U., Thetreatment of azo dyes found in textile industry wastewater byanaerobic biological method and chemical oxidation, Sep.Purif. Technol., 2011, 79, 26-33.[Crossref]
  • [91] Yang Z., Liu X., Gao B., Zhao S., Wang Y., Yue Q., Li Q.,Flocculation kinetics and floc characteristics of dye wastewaterby polyferric chloride-poly-epichlorohydrin-dimethylaminecomposite flocculant, Sep. Purif. Technol., 2013, 118, 583-590.[Crossref]
  • [92] Gregory P., Classification of Dyes by Chemical Structure, in:Waring, D., Hallas G. (Eds.) The Chemistry and Application ofDyes, Springer US, 1990, pp. 17-47.
  • [93] Gregory P., Historical Perspectives, in: High-TechnologyApplications of Organic Colorants, Springer US, 1991, pp. 1-3.
  • [94] Colour Index, Vol. 4, 3rd Edition, The Society of Dyers andColourists, Bradford, UK, 1971.
  • [95] Zollinger H., Color Chemistry: Syntheses, Properties, andApplications of Organic Dyes and Pigments, Wiley, 2003.
  • [96] Gordon P.F., Gregory P., Organic Chemistry in Colour, SpringerBerlin Heidelberg, 1983.
  • [97] Gaboriaud-Kolar N., Nam S., Skaltsounis A.L., A colorfulhistory: the evolution of indigoids, Progress in the chemistryof organic natural products, 2014, 99, 69-145.
  • [98] Cooksey C., Tyrian purple: The first four thousand years, Sci.Prog., 2013, 96, 171-186.[Crossref]
  • [99] Mujumdar R.B., Ernst L.A., Mujumdar S.R., Lewis C.J.,Waggoner A.S., Cyanine dye labeling reagents: Sulfoindocyaninesuccinimidyl esters, Bioconjug. Chem., 1993, 4,105-111.[Crossref]
  • [100] Pardal A.C., Ramos S.S., Santos L., Almeida P., Synthesis andfixation of aminocyanines to microcrystalline cellulose usingcyanuric chloride as a cross-linking agent, Color. Technol.,2001, 117, 43-48.[Crossref]
  • [101] Zollinger H., Color Chemistry, 2nd Ed., VCH Verlagsgelleschaft,Weinheim, DE, 1991.
  • [102] Griffiths J., Colour and constitution of organic molecules,Academic Press, 1976.
  • [103] Anderson J.S., Bradbrook E.F., Cook A.H., Linstead R.P.,212. Phthalocyanines and associated compounds. PartXIII. Absorption spectra, Journal of the Chemical Society(Resumed), 1938, 1151-1156.
  • [104] Heid C., Holoubek R., Klein R., 100 Jähre Schwefelfarbstoffe(100 Years of Sulfur Dyes), Melliand Textilber Int., 1973, 54,1314-1327.
  • [105] Leonowicz A., Matuszewska A., Luterek J., Ziegenhagen D.,Wojtaś-Wasilewska M., Cho N.-S., Hofrichter M., Rogalski J.,Biodegradation of Lignin by White Rot Fungi, Fungal Genet.Biol., 1999, 27, 175-185.[Crossref]
  • [106] Ding Z., Chen Y., Xu Z., Peng L., Xu G., Gu Z., Zhang L., ShiG., Zhang K., Production and characterization of laccasefrom Pleurotus ferulae in submerged fermentation, Ann.Microbiol., 2014, 64, 121-129.[Crossref]
  • [107] Giardina P., Autore F., Faraco V., Festa G., Palmieri G.,Piscitelli A., Sannia G., Structural characterization of heterodimericlaccases from Pleurotus ostreatus, Appl. Biochem.Biotechnol., 2007, 75, 1293-1300.
  • [108] Youn H.D., Hah Y.C., Kang S.O., Role of Laccase in LigninDegradation by White-Rot Fungi, FEMS Microbiol. Lett., 1995,132, 183-188.[Crossref]
  • [109] Sarkanen K.V., Ludwig C.H., Lignins: Occurence, Formation,Structure, and Reactions, Wiley Interscience, New York, 1971.
  • [110] Adler E., Lignin chemistry-past, present and future, WoodScience and Technology, 1977, 11, 169-218.[Crossref]
  • [111] Higuchi T., Lignin biochemistry: Biosynthesis andbiodegradation, Wood Sci. Technol., 1990, 24, 23-63.
  • [112] Brown S.A., Chemistry of Lignification: Biochemical researchon lignins is yielding clues to the structure and formation ofthese complex polymers, Science, 1961, 134, 305-313.[Crossref]
  • [113] Voxeur A., Wang Y., Sibout R., Lignification: differentmechanisms for a versatile polymer, Curr. Opin. Plant Biol.,2015, 23, 83-90.[Crossref]
  • [114] Hatakka A., Lignin-modifying enzymes from selectedwhite-rot fungi: Production and role in lignin degradation,FEMS Microbiol. Rev., 1994, 13, 125-135.[Crossref]
  • [115] ten Have R., Teunissen P.J.M., Oxidative mechanisms involvedin lignin degradation by white-rot fungi, Chem. Rev., 2001,101, 3397-3413.
  • [116] Breen A., Singleton F.L., Fungi in lignocellulose breakdownand biopulping, Curr. Opin. Biotechnol., 1999, 10, 252-258.[Crossref]
  • [117] Fackler K., Gradinger C., Hinterstoisser B., Messner K.,Schwanninger M., Lignin degradation by white rot fungi onspruce wood shavings during short-time solid-state fermentationsmonitored by near infrared spectroscopy, Enzyme andMicrobial Technology, 2006, 39, 1476-1483.
  • [118] Jeffries T., Biodegradation of lignin and hemicelluloses, in:Ratledge, C. (Ed.) Biochemistry of microbial degradation,Springer Netherlands, 1994, pp. 233-277.
  • [119] Lundell T.K., Makela M.R., Hilden K., Lignin-modifyingenzymes in filamentous basidiomycetes--ecological,functional and phylogenetic review, J. Basic Microbiol., 2010,50, 5-20.[Crossref]
  • [120] Martinez A.T., Speranza M., Ruiz-Duenas F.J., Ferreira P.,Camarero S., Guillen F., Martinez M.J., Gutierrez A., del RioJ.C., Biodegradation of lignocellulosics: microbial, chemical,and enzymatic aspects of the fungal attack of lignin, Int.Microbiol., 2005, 8, 195-204.
  • [121] Palm-Espling M.E., Niemiec M.S., Wittung-Stafshede P., Roleof metal in folding and stability of copper proteins in vitro,Biochimica et Biophysica Acta - Molecular Cell Research,2012, 1823, 1594-1603.
  • [122] Timofeevski S.L., Reading N.S., Aust S.D., Mechanisms forprotection against inactivation of manganese peroxidaseby hydrogen peroxide, Arch. Biochem. Biophys., 1998, 356,287-295.
  • [123] Wariishi H., Gold M.H., Lignin peroxidase compound III:Mechanism of formation and decomposition, J. Biol. Chem.,1990, 265, 2070-2077.
  • [124] Valderrama B., Ayala M., Vazquez-Duhalt R., Suicideinactivation of peroxidases and the challenge of engineeringmore robust enzymes, Chemistry and Biology, 2002, 9,555-565.
  • [125] Zucca P., Cocco G., Pintus M., Rescigno A., Sanjust E.,Biomimetic sulfide oxidation by the means of immobilizedFe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphin undermild experimental conditions, Journal of Chemistry, 2013,651274, 1-7.
  • [126] Zucca P., Mocci G., Rescigno A., Sanjust E.,5,10,15,20-Tetrakis(4-sulfonato-phenyl)porphine-Mn(III)immobilized on imidazole-activated silica as a novel ligninperoxidase-like biomimetic catalyst, J. Mol. Catal. A: Chem.,2007, 278, 220-227.
  • [127] Zucca P., Rescigno A., Sanjust E., Ligninolytic peroxidase-likeactivity of a synthetic metalloporphine immobilized ontomercapto-grafted crosslinked PVA inspired by the activesite of cytochrome P450, Cuihua Xuebao/Chinese Journal ofCatalysis, 2011, 32, 1663-1666.
  • [128] Forrester I.T., Grabski A.C., Burgess R.R., LeathamG.F., Manganese, Mn-dependent peroxidases, and the biodegradation of lignin, Biochem. Biophys. Res. Commun.,1988, 157, 992-999.
  • [129] Hammel K.E., Cullen D., Role of fungal peroxidases inbiological ligninolysis, Curr. Opin. Plant Biol., 2008, 11,349-355.[Crossref]
  • [130] Hofrichter M., Review: Lignin conversion by manganeseperoxidase (MnP), Enzyme and Microbial Technology, 2002,30, 454-466.
  • [131] Marques G., Gamelas J.A.F., Ruiz-Dueñas F.J., del Rio J.C.,Evtuguin D.V., Martínez A.T., Gutiérrez A., Delignification ofeucalypt kraft pulp with manganese-substituted polyoxometalateassisted by fungal versatile peroxidase, Bioresour.Technol., 2010, 101, 5935-5940.[Crossref]
  • [132] Nugroho Prasetyo E., Kudanga T., Østergaard L., Rencoret J.,Gutiérrez A., del Río J.C., et al., Polymerization of lignosulfonatesby the laccase-HBT (1-hydroxybenzotriazole) systemimproves dispersibility, Bioresour. Technol., 2010, 101,5054-5062.[Crossref]
  • [133] Arora D.S., Sharma R.K., Ligninolytic Fungal Laccasesand Their Biotechnological Applications, Appl. Biochem.Biotechnol., 2010, 160, 1760-1788.
  • [134] Kirk T.K., Shimada M., CHAPTER 21 - Lignin Biodegradation:The Microorganisms Involved and the Physiology andBiochemistry of Degradation by White-Rot Fungi, in:Higuchi, T. (Ed.) Biosynthesis and Biodegradation of WoodComponents, Academic Press, 1985, pp. 579-605.
  • [135] Ander P., Eriksson K.E., Yu H.s., Vanillic acid metabolism bySporotrichum pulverulentum: evidence for demethoxylationbefore ring-cleavage, Arch. Microbiol., 1983, 136, 1-6.[Crossref]
  • [136] Gómez-Toribio V., García-Martín A.B., Martínez M.J., MartínezÁ.T., Guillén F., Induction of extracellular hydroxyl radicalproduction by white-rot fungi through quinone redox cycling,Appl. Environ. Microbiol., 2009, 75, 3944-3953.[Crossref]
  • [137] Stahl J.D., Rasmussen S.J., Aust S.D., Reduction of Quinonesand Radicals by a Plasma Membrane Redox System ofPhanerochaete chrysosporium, Arch. Biochem. Biophys.,1995, 322, 221-227.
  • [138] Curreli N., Rescigno A., Rinaldi A., Pisu B., Sollai F., SanjustE., Degradation of juglone by Pleurotus sajor-caju, Mycol.Res., 2004, 108, 913-918.[Crossref]
  • [139] Cristóvão R.O., Tavares A.P.M., Ferreira L.A., Loureiro J.M.,Boaventura R.A.R., Macedo E.A., Modeling the discolorationof a mixture of reactive textile dyes by commercial laccase,Bioresour. Technol., 2009, 100, 1094-1099.[Crossref]
  • [140] Cristóvão R.O., Tavares A.P.M., Ribeiro A.S., Loureiro J.M.,Boaventura R.A.R., Macedo E.A., Kinetic modelling andsimulation of laccase catalyzed degradation of reactive textiledyes, Bioresour. Technol., 2008, 99, 4768-4774.[Crossref]
  • [141] Enayatzamir K., Tabandeh F., Yakhchali B., Alikhani H.A.,Rodríguez Couto S., Assessment of the joint effect of laccaseand cellobiose dehydrogenase on the decolouration ofdifferent synthetic dyes, J. Hazard. Mater., 2009, 169,176-181.
  • [142] Fu Y., Viraraghavan T., Fungal decolorization of dyewastewaters: a review, Bioresour. Technol., 2001, 79,251-262.[Crossref]
  • [143] Grassi E., Scodeller P., Filiel N., Carballo R., Levin L., Potentialof Trametes trogii culture fluids and its purified laccase forthe decolorization of different types of recalcitrant dyeswithout the addition of redox mediators, Int. Biodeterior.Biodegrad., 2011, 65, 635-643.[Crossref]
  • [144] Kuddus M., Joseph B., Wasudev Ramteke P., Production oflaccase from newly isolated Pseudomonas putida and itsapplication in bioremediation of synthetic dyes and industrialeffluents, Biocatalysis and Agricultural Biotechnology, 2013,2, 333-338.
  • [145] Khouni I., Marrot B., Moulin P., Amar R.B., Decolourizationof the reconstituted textile effluent by different processtreatments: Enzymatic catalysis, coagulation/flocculationand nanofiltration processes, Desalination, 2011, 268, 27-37.
  • [146] Moreira S., Milagres A.M.F., Mussatto S.I., Reactive dyesand textile effluent decolorization by a mediator system ofsalt-tolerant laccase from Peniophora cinerea, Sep. Purif.Technol., 2014, 135, 183-189.
  • [147] Robinson T., McMullan G., Marchant R., Nigam P.,Remediation of dyes in textile effluent: a critical review oncurrent treatment technologies with a proposed alternative,Bioresour. Technol., 2001, 77, 247-255.[Crossref]
  • [148] Rodríguez E., Pickard M.A., Vazquez-Duhalt R., IndustrialDye Decolorization by Laccases from Ligninolytic Fungi, Curr.Microbiol., 1999, 38, 27-32.[Crossref]
  • [149] Rodríguez Couto S., Toca Herrera J.L., Industrial and biotechnologicalapplications of laccases: A review, Biotechnol. Adv.,2006, 24, 500-513.[Crossref]
  • [150] Wang T.-N., Lu L., Wang J.-Y., Xu T.-F., Li J., Zhao M., Enhancedexpression of an industry applicable CotA laccase fromBacillus subtilis in Pichia pastoris by non-repressing carbonsources together with pH adjustment: Recombinant enzymecharacterization and dye decolorization, Process Biochem.,2015, 50, 97-103.[Crossref]
  • [151] Wells A., Teria M., Eve T., Green oxidations with laccasemediatorsystems, Biochem. Soc. Trans., 2006, 34, 304-308.[Crossref]
  • [152] Wong Y., Yu J., Laccase-catalyzed decolorization of syntheticdyes, Water Res., 1999, 33, 3512-3520.[Crossref]
  • [153] Zhang M., Wu F., Wei Z., Xiao Y., Gong W., Characterizationand decolorization ability of a laccase from Panus rudis,Enzyme and Microbial Technology, 2006, 39, 92-97.
  • [154] Lu L., Zhao M., Wang T.-N., Zhao L.-Y., Du M.-H., Li T.-L., LiD.-B., Characterization and dye decolorization ability of analkaline resistant and organic solvents tolerant laccase fromBacillus licheniformis LS04, Bioresour. Technol., 2012, 115,35-40.[Crossref]
  • [155] Zhu M.-J., Du F., Zhang G.-Q., Wang H.-X., Ng T.-B.,Purification a laccase exhibiting dye decolorizing ability froman edible mushroom Russula virescens, Int. Biodeterior.Biodegrad., 2013, 82, 33-39.[Crossref]
  • [156] Zilly A., da Silva Coelho-Moreira J., Bracht A., Marques deSouza C.G., Carvajal A.E., Koehnlein E.A., Peralta R.M.,Influence of NaCl and Na2SO4 on the kinetics and dye decolorizationability of crude laccase from Ganoderma lucidum,Int. Biodeterior. Biodegrad., 2011, 65, 340-344.
  • [157] Liu W., Chao Y., Yang X., Bao H., Qian S., Biodecolorization ofazo, anthraquinonic and triphenylmethane dyes by white-rotfungi and a laccase-secreting engineered strain J. Ind.Microbiol. Biotechnol., 2004, 31, 127-132.[Crossref]
  • [158] Chagas E.P., Durrant L.R., Decolorization of azo dyes byPhanerochaete chrysosporium and Pleurotus sajorcaju,Enzyme and Microbial Technology, 2001, 29, 473-477.
  • [159] Salony, Mishra S., Bisaria V.S., Production and characterizationof laccase from Cyathus bulleri and its usein decolourization of recalcitrant textile dyes, AppliedMicrobiology and Biotechnology, 2006, 71, 646-653.
  • [160] Chivukula M., Renganathan V., Phenolic Azo Dye Oxidationby Laccase from Pyricularia oryzae, Appl. Environ. Microbiol.,1995, 61, 4374-4377.
  • [161] Pereira L., Coelho A.V., Viegas C.A., Santos M.M.C.d., RobaloM.P., Martins L.O., Enzymatic biotransformation of the azodye Sudan Orange G with bacterial CotA-laccase, Journal ofBiotechnology, 2009, 139, 68-77.
  • [162] Zille A., Górnacka B., Rehorek A., Cavaco-Paulo A.,Degradation of Azo Dyes by Trametes villosa Laccaseover Long Periods of Oxidative Conditions, Appl. Environ.Microbiol., 2005, 71, 6711-6718.[Crossref]
  • [163] Kosower E.M., Monosubstituted diazenes (diimides).Surprising intermediates, Acc. Chem. Res., 1971, 4, 193-198.[Crossref]
  • [164] Telke A., Kadam A., Jagtap S., Jadhav J., Govindwar S.,Biochemical characterization and potential for textile dyedegradation of blue laccase from Aspergillus ochraceusNCIM-1146, Biotechnol. Bioprocess Eng., 2010, 15, 696-703.
  • [165] Mishra A., Kumar S., Kumar Pandey A., Laccase productionand simultaneous decolorization of synthetic dyes in uniqueinexpensive medium by new isolates of white rot fungus,International Biodeterioration and Biodegradation, 2011, 65,487-493.[Crossref]
  • [166] Goszczynski S., Paszczynski A., Pasti-Grigsby M.B.,Crawford R.L., Crawford D.L., New pathway for degradationof sulfonated azo dyes by microbial peroxidases ofPhanerochaete chrysosporium and Streptomyceschromofuscus, J. Bacteriol., 1994, 176, 1339-1347.
  • [167] Emmert Iii F.L., Thomas J., Hon B., Gengenbach A.J., Metalloporphyrincatalyzed oxidation of methyl yellow and relatedazo compounds, Inorg. Chim. Acta, 2008, 361, 2243-2251.
  • [168] Stolz A., Basic and applied aspects in the microbialdegradation of azo dyes, Applied Microbiology andBiotechnology, 2001, 56, 69-80.
  • [169] Liu L., Zhang J., Tan Y., Jiang Y., Hu M., Li S., Zhai Q., Rapiddecolorization of anthraquinone and triphenylmethane dyeusing chloroperoxidase: Catalytic mechanism, analysis ofproducts and degradation route, Chem. Eng. J., 2014, 244,9-18.
  • [170] Arrieta-Baez D., Roman R., Vazquez-Duhalt R., Jiménez-Estrada M., Peroxidase-mediated transformation ofhydroxy-9,10-anthraquinones, Phytochemistry, 2002, 60,567-572.
  • [171] Zucca P., Vinci C., Sollai F., Rescigno A., Sanjust E.,Degradation of Alizarin Red S under mild experimentalconditions by immobilized 5,10,15,20-tetrakis(4-sulfonatophenyl)porphine-Mn(III) as a biomimetic peroxidase-likecatalyst, J. Mol. Catal. A: Chem., 2008, 288, 97-102.
  • [172] Guan Z.B., Song C.M., Zhang N., Zhou W., Xu C.W., Zhou L.X.,Zhao H., Cai Y.J., Liao X.R., Overexpression, characterization,and dye-decolorizing ability of a thermostable, pH-stable,and organic solvent-tolerant laccase from Bacillus pumilusW3, Journal of Molecular Catalysis B: Enzymatic, 2014, 101,1-6.
  • [173] Nagashima N., Ishikawa T., Takagishi T., Bleaching of dyeswith Laccases, Sen’i Gakkaishi, 2013, 69, 183-190.
  • [174] Sarnthima R., Khammuang S., Laccase production byPycnoporus sanguineus grown under liquid state cultureand its potential in remazol brilliant blue R decolorization,International Journal of Agriculture and Biology, 2013, 15,215-222.
  • [175] Faraco V., Pezzella C., Giardina P., Piscitelli A., Vanhulle S.,Sannia G., Decolourization of textile dyes by the white-rotfungi Phanerochaete chrysosporium and Pleurotus ostreatus,J. Chem. Technol. Biotechnol., 2009, 84, 414-419.[Crossref]
  • [176] Guillen F., Gomez-Toribio V., Martinez M.J., Martinez A.T.,Production of hydroxyl radical by the synergistic action offungal laccase and aryl alcohol oxidase, Arch. Biochem.Biophys., 2000, 383, 142-147.
  • [177] Li Q., Ge L., Cai J., Pei J., Xie J., Zhao L., Comparison of twolaccases from Trametes versicolor for application in thedecolorization of dyes, J. Microbiol. Biotechnol., 2014, 24,545-555.[Crossref]
  • [178] Hsu C.A., Wen T.N., Su Y.C., Jiang Z.B., Chen C.W., Shyur L.F.,Biological degradation of anthroquinone and azo dyes by anovel laccase from Lentinus sp, Environ. Sci. Technol., 2012,46, 5109-5117.[Crossref]
  • [179] Tychanowicz G.K., Zilly A., De Souza C.G.M., Peralta R.M.,Decolourisation of industrial dyes by solid-state culturesof Pleurotus pulmonarius, Process Biochem., 2004, 39,855-859.[Crossref]
  • [180] Galai S., Limam F., Marzouki M.N., A new Stenotrophomonasmaltophilia strain producing laccase. use in decolorizationof synthetics dyes, Appl. Biochem. Biotechnol., 2009, 158,416-431.
  • [181] Ahmed Abedin R.M., El Hanafy A.A., El-Latif S.A., El-AssarS.A., Fadel M.S., Ligninolytic oxidative system of fungalEgyptian isolates and their applications in the decolorizationof industrial dyes, Biotechnology and BiotechnologicalEquipment, 2013, 27, 4269-4275.
  • [182] Levin L., Diorio L., Grassi E., Forchiassin F., Grape stalksas substrate for white rot fungi, lignocellulolytic enzymeproduction and dye decolorization, Rev. Argent. Microbiol.,2012, 44, 105-112.
  • [183] Grassi E., Pildain M.B., Levin L., Carmaran C., Studies indiatrypaceae: The new species Eutypa microasca andinvestigation of ligninolytic enzyme production, Sydowia,2014, 66, 99-114.
  • [184] Zucca P., Sollai F., Garau A., Rescigno A., Sanjust E., Fe(III)-5,10,15,20-tetrakis(pentafluorophenyl)porphine supportedon pyridyl-functionalized, crosslinked poly(vinyl alcohol) as abiomimetic versatile-peroxidase-like catalyst, J. Mol. Catal. A:Chem., 2009, 306, 89-96.
  • [185] Archibald F.S., A new assay for lignin-type peroxidasesemploying the dye Azure B, Applied and EnvironmentMicrobiology, 1992, 58, 3110-3116.
  • [186] Zucca P., Vinci C., Rescigno A., Dumitriu E., Sanjust E., Isthe bleaching of phenosafranine by hydrogen peroxideoxidation catalyzed by silica-supported 5,10,15,20-tetrakis-(sulfonatophenyl)porphine-Mn(III) really biomimetic?, J. Mol.Catal. A: Chem., 2010, 321, 27-33.
  • [187] Bao S., Teng Z., Ding S., Heterologous expression andcharacterization of a novel laccase isoenzyme with dyesdecolorization potential from Coprinus comatus, Mol. Biol.Rep., 2013, 40, 1927-1936.[Crossref]
  • [188] Tian Y.S., Xu H., Peng R.H., Yao Q.H., Wang R.T., Heterologousexpression and characterization of laccase 2 fromCoprinopsis cinerea capable of decolourizing differentrecalcitrant dyes, Biotechnology and BiotechnologicalEquipment, 2014, 28, 248-258.
  • [189] Balan K., Pratheebaa P., Palvannan T., Application of thelaccase, produced on coconut flesh by Pleurotus floridafor dye decolorization, Journal of Water Chemistry andTechnology, 2013, 35, 273-280.
  • [190] Jiang M., Ten Z., Ding S., Decolorization of synthetic dyes bycrude and purified laccases from Coprinus comatus grownunder different cultures: The role of major isoenzyme indyes decolorization, Appl. Biochem. Biotechnol., 2013, 169,660-672.
  • [191] Kunjadia P.D., Patel F.D., Nagee A., Mukhopadhyaya P.N.,Dave G.S., Crystal violet (Triphenylmethane dye) decolorizationpotential of Pleurotus ostreatus (MTCC 142),BioResources, 2012, 7, 1189-1199.
  • [192] Vasdev K., Kuhad R.C., Saxena R.K., Decolorization of triphenylmethanedyes by the bird’s nest fungus Cyathus bulleri,Curr. Microbiol., 1995, 30, 269-272.[Crossref]
  • [193] Casas N., Parella T., Vicent T., Caminal G., Sarrà M.,Metabolites from the biodegradation of triphenylmethanedyes by Trametes versicolor or laccase, Chemosphere, 2009,75, 1344-1349.[Crossref]
  • [194] Parshetti G.K., Kalme S.D., Gomare S.S., Govindwar S.P.,Biodegradation of Reactive blue-25 by Aspergillus ochraceusNCIM-1146, Bioresour. Technol., 2007, 98, 3638-3642.
  • [195] Conneely A., Smyth W.F., McMullan G., Study of the white-rotfungal degradation of selected phthalocyanine dyes bycapillary electrophoresis and liquid chromatography, Anal.Chim. Acta, 2002, 451, 259-270.
  • [196] Chhabra M., Mishra S., Sreekrishnan T.R., Combinationof chemical and enzymatic treatment for efficient decolorization/degradation of textile effluent: High operationalstability of the continuous process, Biochem. Eng. J., 2015,93, 17-24.[Crossref]
  • [197] Galai S., Korri-Youssoufi H., Marzouki M.N., Characterizationof yellow bacterial laccase SmLac/role of redox mediators inazo dye decolorization, J. Chem. Technol. Biotechnol., 2014,89, 1741-1750.[Crossref]
  • [198] Kenzom T., Srivastava P., Mishra S., Structural insights into2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineeredCyathus bulleri laccase and characterization of degradationproducts, Appl. Environ. Microbiol., 2014, 80, 7484-7495.
  • [199] Gioia L., Manta C., Ovsejevi K., Burgueño J., Menéndez P.,Rodriguez-Couto S., Enhancing laccase production by anewly-isolated strain of Pycnoporus sanguineus with highpotential for dye decolouration, RSC Advances, 2014, 4,34096-34103.
  • [200] Rosado T., Bernardo P., Koci K., Coelho A.V., Robalo M.P.,Martins L.O., Methyl syringate: An efficient phenolic mediatorfor bacterial and fungal laccases, Bioresour. Technol., 2012,124, 371-378.[Crossref]
  • [201] D’Alfonso C., Lanzalunga O., Lapi A., Vadalà R., Comparingthe catalytic efficiency of ring substituted 1- hydroxybenzotriazolesas laccase mediators, Tetrahedron, 2014, 70,3049-3055.
  • [202] Knutson K., Ragauskas A., Laccase-mediator biobleachingapplied to a direct yellow dyed paper, Biotechnol. Prog.,2004, 20, 1893-1896.[Crossref]
  • [203] Moldes D., Sanromán M.Á., Amelioration of the ability todecolorize dyes by laccase: Relationship between redoxmediators and laccase isoenzymes in Trametes versicolor,World Journal of Microbiology and Biotechnology, 2006, 22,1197-1204.
  • [204] Tavares A.P.M., Cristóvão R.O., Loureiro J.M., BoaventuraR.A.R., Macedo E.A., Optimisation of reactive textile dyesdegradation by laccase-mediator system, J. Chem. Technol.Biotechnol., 2008, 83, 1609-1615.[Crossref]
  • [205] Khlifi R., Belbahri L., Woodward S., Ellouz M., Dhouib A.,Sayadi S., Mechichi T., Decolourization and detoxification oftextile industry wastewater by the laccase-mediator system,J. Hazard. Mater., 2010, 175, 802-808.
  • [206] Benzina O., Daâssi D., Zouari-Mechichi H., Frikha F.,Woodward S., Belbahri L., Rodriguez-Couto S., MechichiT., Decolorization and detoxification of two textile industryeffluents by the laccase/1-hydroxybenzotriazole system,Environmental Science and Pollution Research, 2013, 20,5177-5187.
  • [207] Bernini R., Crisante F., Gentili P., Menta S., Morana F., PieriniM., Unexpected different chemoselectivity in the aerobicoxidation of methylated planar catechin and bent epicatechinderivatives catalysed by the Trametes villosa laccase/1-hydroxybenzotriazole system, RSC Advances, 2014, 4,8183-8190.
  • [208] Zucca P., Sanjust E., Inorganic materials as supports forcovalent enzyme immobilization: Methods and mechanisms,Molecules, 2014, 19, 14139-14194.[Crossref]
  • [209] Ba S., Arsenault A., Hassani T., Jones J.P., Cabana H., Laccaseimmobilization and insolubilization: From fundamentals toapplications for the elimination of emerging contaminantsin wastewater treatment, Crit. Rev. Biotechnol., 2013, 33,404-418.[Crossref]
  • [210] Durán N., Rosa M.A., D’Annibale A., Gianfreda L., Applicationsof laccases and tyrosinases (phenoloxidases) immobilizedon different supports: A review, Enzyme and MicrobialTechnology, 2002, 31, 907-931.
  • [211] Gasser C.A., Ammann E.M., Shahgaldian P., Corvini P.F.X.,Laccases to take on the challenge of emerging organiccontaminants in wastewater, Applied Microbiology andBiotechnology, 2014, 98, 9931-9952.
  • [212] Husain Q., Potential applications of the oxidoreductiveenzymes in the decolorization and detoxification of textileand other synthetic dyes from polluted water: A review, Crit.Rev. Biotechnol., 2006, 26, 201-221.[Crossref]
  • [213] Viswanath B., Rajesh B., Janardhan A., Kumar A.P., NarasimhaG., Fungal laccases and their applications in bioremediation,Enzyme Research, 2014, 2014.
  • [214] Santos J.C.S.d., Barbosa O., Ortiz C., Berenguer-Murcia A.,Rodrigues R.C., Fernandez-Lafuente R., Importance of theSupport Properties for Immobilization or Purification ofEnzymes, ChemCatChem, 2015, n/a-n/a.
  • [215] Salis A., Pisano M., Monduzzi M., Solinas V., Sanjust E.,Laccase from Pleurotus sajor-caju on functionalised SBA-15mesoporous silica: Immobilisation and use for the oxidationof phenolic compounds, Journal of Molecular Catalysis B:Enzymatic, 2009, 58, 175-180.[Crossref]
  • [216] Bayramoglu G., Yilmaz M., Arica M.Y., Preparation andcharacterization of epoxy-functionalized magnetic chitosanbeads: Laccase immobilized for degradation of reactive dyes,Bioprocess Biosyst. Eng., 2010, 33, 439-448.
  • [217] Cristóvão R.O., Silvério S.C., Tavares A.P.M., Brígida A.I.S.,Loureiro J.M., Boaventura R.A.R., Macedo E.A., Coelho M.A.Z.,Green coconut fiber: A novel carrier for the immobilizationof commercial laccase by covalent attachment for textiledyes decolourization, World Journal of Microbiology andBiotechnology, 2012, 28, 2827-2838.
  • [218] Lin J., Fan L., Miao R., Le X., Chen S., Zhou X., Enhancingcatalytic performance of laccase via immobilization onchitosan/CeO2 microspheres, Int. J. Biol. Macromol., 2015, 78,1-8.
  • [219] Mahmoodi N.M., Arabloo M., Abdi J., Laccase immobilizedmanganese ferrite nanoparticle: Synthesis and LSSVMintelligent modeling of decolorization, Water Res., 2014, 67,216-226.[Crossref]
  • [220] Mohajershojaei K., Mahmoodi N.M., Khosravi A., Immobilizationof laccase enzyme onto titania nanoparticle anddecolorization of dyes from single and binary systems,Biotechnol. Bioprocess Eng., 2015, 20, 109-116.[Crossref]
  • [221] Uygun M., Preparation of laccase immobilized cryogels andusage for decolorization, Journal of Chemistry, 2013.
  • [222] Zhang P., Wang Q., Zhang J., Li G., Wei Q., Preparationof amidoxime-modified polyacrylonitrile nanofibersimmobilized with laccase for dye degradation, Fibers andPolymers, 2014, 15, 30-34.[Crossref]
  • [223] Zhang X., Pan B., Wu B., Zhang W., Lv L., A new polymerbasedlaccase for decolorization of AO7: Long-term storageand mediator reuse, Bioresour. Technol., 2014, 164, 248-253.
  • [224] Amezquita-Garcia H.J., Razo-Flores E., Cervantes F.J.,Rangel-Mendez J.R., Anchorage of anthraquinone moleculesonto activated carbon fibers to enhance the reduction of4-nitrophenol, J. Chem. Technol. Biotechnol., 2014.
  • [225] Mate D.M., Alcalde M., Laccase engineering: From rationaldesign to directed evolution, Biotechnol. Adv., 2015, 33,25-40.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.