Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Short Peptides in Minimalistic Biocatalyst Design


Title variants

Languages of publication



We review recent developments in the use of
short peptides in the design of minimalistic biocatalysts
focusing on ester hydrolysis. A number of designed peptide
nanostructures are shown to have (modest) catalytic
activity. Five features are discussed and illustrated by
literature examples, including primary peptide sequence,
nanosurfaces/scaffolds, binding pockets, multivalency
and the presence of metal ions. Some of these are derived
from natural enzymes, but others, such as multivalency
of active sites on designed nanofibers, may give rise to
new features not found in natural enzymes. Remarkably,
it is shown that each of these design features give rise to
similar rate enhancements in ester hydrolysis. Overall,
there has been significant progress in the development of
fundamental understanding of the factors that influence
binding and activity in recent years, holding promise for
increasingly rational design of peptide based biocatalysts.








Physical description


1 - 9 - 2015
15 - 5 - 2015
5 - 8 - 2015


  • WestCHEM/Department of Pure
    and Applied Chemistry, University of Strathclyde, Thomas Graham
    Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • WestCHEM/Department of Pure
    and Applied Chemistry, University of Strathclyde, Thomas Graham
    Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • Advanced Science Research
    Center (ASRC) and Hunter College, City University of New York, 85 St
    Nicholas Terrace, New York, NY10031, USA


  • [1] Palmer T., Understanding enzymes, Prentice Hall/EllisHorwood, London ; New York, 1995.
  • [2] Stryer L., Biochemistry, W.H. Freeman Company, New York,1995.
  • [3] Greenwald J., Riek R., On the Possible Amyloid Origin of ProteinFolds, J. Mol. Biol., 2012, 421, 417-426.
  • [4] Carny O., Gazit E., A model for the role of short self-assembledpeptides in the very early stages of the origin of life, FASEB J.,2005, 19, 1051-1055.[Crossref]
  • [5] Neurath H., Walsh K.A., Role of Proteolytic-Enzymes inBiological Regulation, Proc. Natl. Acad. Sci. U.S.A., 1976, 73,3825-3832.
  • [6] Neurath H., Evolution of Proteolytic-Enzymes, Science., 1984,224, 350-357.
  • [7] Carter P., Wells J.A., Dissecting the Catalytic Triad of a SerineProtease, Nature., 1988, 332, 564-568.
  • [8] Li Y.S., Zhao Y.F., Hatfield S., Wan R., Zhu Q., Li X.H., McMillsM., Ma Y., Li J., Brown K.L., et al., Dipeptide seryl-histidineand related oligopeptides cleave DNA, protein, and a carboxylester, Bioorg. Med. Chem., 2000, 8, 2675-2680.[Crossref]
  • [9] Wolfenden R., Snider M.J., The depth of chemical time and thepower of enzymes as catalysts, Acc. Chem. Res., 2001, 34,938-945.[Crossref]
  • [10] Miller B.G., Wolfenden R., Catalytic proficiency: The unusualcase of OMP decarboxylase, Annu. Rev. Biochem., 2002, 71,847-885.
  • [11] Steitz T.A., Shulman R.G., Crystallographic and Nmr-Studiesof the Serine Proteases, Annu. Rev. Biophys. Bio., 1982, 11,419-444.[Crossref]
  • [12] Polgar L., The catalytic triad of serine peptidases, Call. Mol.Life. Sci., 2005, 62, 2161-2172.
  • [13] Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V.,Molecular and biotechnological aspects of microbial proteases,Microbiol. Mol. Biol. Rev., 1998, 62, 597-635.
  • [14] J. M. Berg J.L.T., L. Stryer, Biochemistry. 5th Edition., W HFreeman, New York, 2002.
  • [15] Reetz M.T., Torre C., Eipper A., Lohmer R., Hermes M., BrunnerB., Maichele A., Bocola M., Arand M., Cronin A., et al.,Enhancing the enantioselectivity of an epoxide hydrolase bydirected evolution, Org. Lett., 2004, 6, 177-180.[Crossref]
  • [16] You L., Arnold F.H., Directed evolution of subtilisin E inBacillus subtilis to enhance total activity in aqueous dimethylformamide,Protein Eng., 1996, 9, 77-83.[Crossref]
  • [17] Arnold F.H., Design by directed evolution, Acc. Chem. Res.,1998, 31, 125-131.[Crossref]
  • [18] Vriezema D.M., Aragones M.C., Elemans J.A.A.W., CornelissenJ.J.L.M., Rowan A.E., Nolte R.J.M., Self-assembled nanoreactors,Chem. Rev., 2005, 105, 1445-1489.
  • [19] Pasquato L., Pengo P., Scrimin P., Functional gold nanoparticlesfor recognition and catalysis, J. Mater. Chem., 2004, 14,3481-3487.[Crossref]
  • [20] Gorlero M., Wieczorek R., Adamala K., Giorgi A., Schinina M.E.,Stano P., Luisi P.L., Ser-His catalyses the formation of peptidesand PNAs, FEBS Lett., 2009, 583, 153-156.[WoS]
  • [21] Zhang S., Holmes T., Lockshin C., Rich A., Spontaneousassembly of a self-complementary oligopeptide to form asTable macroscopic membrane, Proc. Natl. Acad. Sci. U.S.A.,1993, 90, 3334-3338.[Crossref]
  • [22] Reches M., Gazit E., Casting metal nanowires within discreteself-assembled peptide nanotubes, Science., 2003, 300,625-627.
  • [23] Hartgerink J.D., Beniash E., Stupp S.I., Self-assembly andmineralization of peptide-amphiphile nanofibers, Science.,2001, 294, 1684-1688.
  • [24] Guler M.O., Soukasene S., Hulvat J.F., Stupp S.I., Presentationand recognition of biotin on nanofibers formed by branchedpeptide amphiphiles, Nano Lett., 2005, 5, 249-252.[Crossref]
  • [25] Jayawarna V., Ali M., Jowitt T.A., Miller A.E., Saiani A., GoughJ.E., Ulijn R.V., Nanostructured hydrogels for three-dimensionalcell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides, Adv. Mater., 2006, 18, 611-614.[Crossref]
  • [26] Yang Z., Xu B., Supramolecular hydrogels based onbiofunctional nanofibers of self-assembled small molecules, J.Mater. Chem., 2007, 17, 2385-2393.[WoS][Crossref]
  • [27] Guler M.O., Stupp S.I., A self-assembled nanofiber catalyst forester hydrolysis, J. Am. Chem. Soc., 2007, 129, 12082-12083.[WoS]
  • [28] Fleming S., Ulijn R.V., Design of nanostructures based onaromatic peptide amphiphiles, Chem. Soc. Rev., 2014, 43,8150-8177.[WoS][Crossref]
  • [29] Huang Z.P., Guan S.W., Wang Y.G., Shi G.N., Cao L.N., Gao Y.Z.,Dong Z.Y., Xu J.Y., Luo Q., Liu J.Q., Self-assembly of amphiphilicpeptides into bio-functionalized nanotubes: a novel hydrolasemodel, Journal of Materials Chemistry B, 2013, 1, 2297-2304.
  • [30] Mahler A., Reches M., Rechter M., Cohen S., Gazit E., Rigid,self-assembled hydrogel composed of a modified aromaticdipeptide, Adv. Mater., 2006, 18, 1365-1370.[Crossref]
  • [31] Zhang C.Q., Xue X.D., Luo Q., Li Y.W., Yang K.N., Zhuang X.X.,Jiang Y.G., Zhang J.C., Liu J.Q., Zou G.Z., et al., Self-AssembledPeptide Nanofibers Designed as Biological Enzymes forCatalyzing Ester Hydrolysis, Acs Nano, 2014, 8, 11715-11723.[WoS][Crossref]
  • [32] Aggeli A., Bell M., Boden N., Keen J.N., Knowles P.F., McLeishT.C.B., Pitkeathly M., Radford S.E., Responsive gels formedby the spontaneous self-assembly of peptides into polymericbeta-sheet tapes, Nature., 1997, 386, 259-262.
  • [33] Collier J.H., Messersmith P.B., Enzymatic modification ofself-assembled peptide structures with tissue transglutaminase,Bioconjugate Chem., 2003, 14, 748-755.[Crossref]
  • [34] Jung J.P., Nagaraj A.K., Fox E.K., Rudra J.S., Devgun J.M.,Collier J.H., Co-assembling peptides as defined matrices forendothelial cells, Biomaterials., 2009, 30, 2400-2410.[Crossref][WoS]
  • [35] Rufo C.M., Moroz Y.S., Moroz O.V., Stohr J., Smith T.A., Hu X.Z.,DeGrado W.F., Korendovych I.V., Short peptides self-assembleto produce catalytic amyloids, Nat. Chem., 2014, 6, 303-309.[Crossref][WoS]
  • [36] Wei Y.N., Hecht M.H., Enzyme-like proteins from an unselectedlibrary of designed amino acid sequences, Protein Eng., Des.Sel., 2004, 17, 67-75.[Crossref]
  • [37] Patel S.C., Bradley L.H., Jinadasa S.P., Hecht M.H., Cofactorbinding and enzymatic activity in an unevolved superfamily ofde novo designed 4-helix bundle proteins, Protein Sci., 2009,18, 1388-1400.[Crossref][WoS]
  • [38] Baltzer L., Broo K.S., Nilsson H., Nilsson J., Designed four-helixbundle catalysts - the engineering of reactive sites forhydrolysis and transesterification reactions of p-nitrophenylesters, Bioorg. Med. Chem., 1999, 7, 83-91.[Crossref]
  • [39] Broo K.S., Brive L., Ahlberg P., Baltzer L., Catalysis of hydrolysisand transesterification reactions of p-nitrophenyl esters by a designed helix-loop-helix dimer, J. Am. Chem. Soc., 1997, 119,11362-11372.
  • [40] Singh N., Conte M.P., Ulijn R.V., Miravet J.F., Escuder B., Insightinto the esterase like activity demonstrated by an imidazoleappended self-assembling hydrogelator, Chem. Commun., (inpress), DOI: 10.1039/c5cc04281j.[WoS][Crossref]
  • [41] Zaramella D., Scrimin P., Prins L.J., Self-Assembly of a CatalyticMultivalent Peptide-Nanoparticle Complex, J. Am. Chem. Soc.,2012, 134, 8396-8399.[WoS]
  • [42] Maeda Y., Javid N., Duncan K., Birchall L., Gibson K.F., CannonD., Kanetsuki Y., Knapp C., Tuttle T., Ulijn R.V., et al., Discoveryof Catalytic Phages by Biocatalytic Self-Assembly, J. Am. Chem.Soc., 2014, 136, 15893-15896.
  • [43] Rodriguez-Llansola F., Escuder B., Miravet J.F., SwitchablePerfomance of an L-Proline-Derived Basic Catalyst Controlledby Supramolecular Gelation, J. Am. Chem. Soc., 2009, 131,11478-11484.[WoS]
  • [44] Rodriguez-Llansola F., Miravet J.F., Escuder B., A supramolecularhydrogel as a reusable heterogeneous catalyst for thedirect aldol reaction, Chem. Commun., 2009, 7303-7305.[WoS][Crossref]
  • [45] Pasquato L., Rancan F., Scrimin P., Mancin F., Frigeri C.,N-methylimidazole-functionalized gold nanoparticles ascatalysts for cleavage of a carboxylic acid ester, Chem.Commun., 2000, 2253-2254.[Crossref]
  • [46] Zaramella D., Scrimin P., Prins L.J., Catalysis of TransesterificationReactions by a Self-Assembled Nanosystem, Int. J. Mol.Sci., 2013, 14, 2011-2021.[Crossref][WoS]
  • [47] Casey J.P., Barbero R.J., Heldman N., Belcher A.M., Versatile deNovo Enzyme Activity in Capsid Proteins from an EngineeredM13 Bacteriophage Library, J. Am. Chem. Soc., 2014, 136,16508-16514.[WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.