Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Biocatalytic Acetylation of Primary Amines by
Lipases under Orbital Shaking and Microwave
Radiation

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper addresses the effects of the
concentration of lipases, temperature and solvent
on the enzymatic acetylation of primary amines.
(±)-Heptan-2-amine 1, (±)-4-phenylbutan-2-amine
2, (±)-1,2,3,4-tetrahydronaphthalen-1-amine 3 and
(±)-2-methylcyclohexan-1-amine 4 were acetylated using
11 lipases to obtain amides under orbital shaking and
microwave radiation. Under microwave radiation the
same amines were acetylated only using the CALB.
(±)-Heptan-2-amine 1 was subjected to kinetic resolution,
under orbital shaking for 7 h employing CALB and ethyl
acetate as acylating agent, and converted into (R)-N-
(heptan-2-yl)acetamide 5 (c = 42%, 88% eep, hexane c = 52%, 81% eep, isopropyl ether; c = 40%, 65% eep, toluene).
The reaction was fast (15 s) under microwave radiation in
hexane and yielded acetamide 4 in high conversion (c = 91%), but without selectivity (5% eep).

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

accepted
12 - 6 - 2015
received
24 - 2 - 2015
online
24 - 7 - 2015

Contributors

  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Química Ambiental, J. Santa
    Angelina, São Carlos, 13563-120, SP, Brazil
  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Química Ambiental, J. Santa
    Angelina, São Carlos, 13563-120, SP, Brazil

References

  • [1] Silverman R.B., Holladay M.W., The Organic Chemistry of DrugDesign and Drug Action, Elsevier Academic Press, (2ª Ed.),p.427- 428, 2014.
  • [2] Radu A., Moisǎ M.E., Toșa M.I., Dima N., Zaharia V., Irimie F.D.,Candida antarctica lipases acting as versatile catalysts for thesynthesis of enantiopure (R)- and (S)-1-(2-phenylthiazol-4-yl)ethanamines, J. Mol. Catal. B-Enzym., 2014, 107, 114-119.[WoS]
  • [3] Dunn P.J., Hii K.K., Krische M.J., Williams M.T., SustainableCatalysis: Challenges and Practices for the Pharmaceutical andFine Chemical Industries, John Wiley & Sons: New Jersey. p.63-64, 2013.
  • [4] Paetzold J., Bäckvall J. E., Chemoenzymatic dynamic kineticresolution of primary amines, J. Am. Chem. Soc., 2005, 127,17620-17621.
  • [5] Ghislieri D., Turner N.J., Biocatalytic approaches to thesynthesis of enantiomerically pure chiral amines, Top. Catal.,2014, 57, 284-300.[WoS]
  • [6] Zaed A.M., Grafton M.W., Ahmad S., Sutherland A., Asymmetricsynthesis of cis-aminocyclopentenols, building blocks formedicinal chemistry, J. Org. Chem., 2014, 79, 1511-1515.[Crossref]
  • [7] Tayler K. M., Snyder S. H., Amphetamine: differentiation by dand I isomers of behavior involving brain norepinephrine ordopamine, Science, 1970, 168, 1487-1489.
  • [8] Hajòs G.T., Garattini S., A note on the effect of (+)- and(−)-amphetamine on lipid metabolism, J. Pharm. Pharmacol.,1973, 25, 418-419.[Crossref]
  • [9] Murase K., Mase T., Ida H., Takahashi K., Murakami M.,Absolute configurations of four isomers of 3-formamido-4-hydroxy-α-[[N-(p-methoxy-α-methylphenethyl) amino] methyl]benzyl alcohol, a potent β-adrenoreceptor stimulant, Chem.Pharm. Bull., 1978, 26, 1123-1129.[Crossref]
  • [10] Clifton J. E., Collins I., Hallett P., Hartley D., Lunts L. H. C.,Wicks P. D.,. Arylethanolamines derived from salicylamide withalpha- and beta-adrenoceptor blocking activities. Preparationof labetalol, its enantiomers and related salicylamides, J. Med.Chem., 1982, 25, 670-679.[Crossref]
  • [11] Gonzalez-Sabin J., Gotor V., Rebolledo F., Cal-b-catalyzedresolution of some pharmacologically interesting -substitutedisopropylamines, Tetrahedron. Asymmetry, 2002, 13,1315-1320.[Crossref]
  • [12] Kappe C.O., Controlled microwave heating in modern organicsynthesis, Angew. Chem. Int. Ed., 2004, 43, 6250-6284.[Crossref]
  • [13] Rastogi S., Bhalla V., Arora V., Microwave-assisted efficientsynthesis and antifungal evaluation of quinoxaline derivatives,Indian J. Drugs., 2014, 2, 49-55
  • [14] Polshettiwar V., Varma R.S., Aqueous Microwave AssistedChemistry: Synthesis and Catalysis, Royal Society of Chemistry:Cambridge, p. 125, 2010.
  • [15] Devendran S., Yadav G.D., Microwave assisted enzymatickinetic resolution of (±)-1-phenyl-2-propyn-1-ol in nonaqueousmedia, Biomed Res. Int., 2014, 2014, 1-9.[WoS][Crossref]
  • [16] Izquierdo D.F., Bernal J.M, Burguete M.I., García- VerdugoE., Lozano P., Luis S.V., An efficient microwave-assistedenzymatic resolution of alcohols using a lipase immobilized onsupported ionic liquid-like phases (SILLPs), RSC Adv, 2013, 3,13123-13126.
  • [17] Shinde S.D., Yadav G.D., Process intensification of immobilizedlipase catalysis by microwave irradiation in the synthesis of4-chloro-2-methylphenoxyacetic acid (MCPA) esters, Biochem.Eng., 2014, 90, 96-102.[WoS]
  • [18] Rós P.C.M, Castro H.F., Carvalho A.K.F., Soares C.M.F., MoraesF.F., Zanin G.M., Microwave-assisted enzymatic synthesis ofbeef tallow biodiesel, J. Ind. Microbiol. Biotechnol., 2012, 39,529-536.[Crossref][WoS]
  • [19] Chena Z., LibY, Linc S., Weia M., Dua F., Ruana G., Developmentof continuous microwave-assisted protein digestion withimmobilized enzyme, Biochem. Biophys. Res. Commun., 2014,445, 491-496.[WoS]
  • [20] Daniel R.M., Dines M., Petach H. H., The denaturation anddegradation of stable enzymes at high temperatures, Biochem.J., 1996, 317, 1-11.
  • [21] Hayes B.L., Microwave Synthesis: Chemistry at the Speed ofLight, CEM Publishing: Matthews,NC. p.18, 2002.
  • [22] Rejasse B., Lamare S., Legoy M.-D., Besson T., Stabilityimprovement of immobilized Candida antarctica lipase B inan organic medium under microwave radiation, Org. Biomol.Chem., 2004, 2, 1086-1089.[Crossref]
  • [23] Yadav G.D., Lathi P.S., Synergism between microwaveand enzyme catalysis in intensification of reactions andselectivities: transesterification of methyl acetoacetate withalcohols, J Mol. Catal. A- Chem., 2004, 223, 51-56.
  • [24] Gotor-Fernandez V., Busto E., Gotor V., Candida antarcticalipase B: An ideal biocatalyst for the preparation ofnitrogenated organic compounds, 2006, 348, 797-912.
  • [25] Araujo Y.J.K, Porto A.LM., aza-Michael addition of primaryAmines by lipases and microwave irradiation: a green protocolfor the synthesis of propanenitrile derivatives, Curr. Microw.Chem., 2014, 1, 87-93.
  • [26] Ribeiro S.S., Uliana M.P., Brocksom T.J., Porto A.L.M., Analysisby GC-MS of an aza-Michael reaction catalyzed by CALB on anorbital shaker and under microwave irradiation, Global J. Sci.Frontier Res.: B Chem., 2014, 7-21.
  • [27] Ribeiro S.S., Oliveira J.R., Porto A.L.M., Lipase-catalyzed kineticresolution of (±)-mandelonitrile under conventional conditionand microwave irradiation, J. Braz. Chem. Soc., 2012, 23,1395-1399.[Crossref][WoS]
  • [28] Ribeiro S.S., Raminelli C., Porto A.L.M., Enzymatic resolutionby CALB of organofluorine compounds under conventionalcondition and microwave irradiation, J. Fluor. Chem., 2013, 154,53-59.[WoS]
  • [29] Armarego W., Perrin D.D., Purification of laboratory chemicals,Butterworth-Heinemann: Oxford, (4ª), 1997.
  • [30] Narayanan C., Sawant, B., Conformation of the carbonyl groupin secondary amides, Tetrahedron Lett., 1971, 12, 1321-1324.[Crossref]
  • [31] Chalard P., Bertrand M., Canet I., Thery V., Remuson R., JeminetG., Determination of absolute configurations of amines andamino acids using nonchiral derivatizing agents (ncda) anddeuterium NMR, Org. Lett., 2000, 2, 2431-2434.[Crossref]
  • [32] Kim M., Kim W., Han K., Choi Y.,Park J., Dynamic kineticresolution of primary amines with a recyclable Pd nanocatalystfor racemization, Org. Lett., 2007, 9, 1157-1159.[WoS][Crossref]
  • [33] Laurent A., Locher P., Mison P., Désamination nitreuse enmilieu aprotique méthyl-2 cyclohexylamines, Bull. Soc. Chim.Fr., 1972, 4, 1369-1374.
  • [34] Zaks A., Klibanov A., The effect of water on enzyme action inorganic media, J. Biol. Chem., 1988, 263, 8017-8021.
  • [35] Berendsen W., Gendrot G., Resnick S., Reuss M., Kineticmodeling of lipase catalyzed hydrolysis of (R/S)-1-methoxy-2-propylacetate as a model reaction for production of chiralsecondary alcohols, J. Biotechnol., 2006, 121, 213-226.]
  • [36] Lerin L. A., Loss R. A, Remonatto D., Zenevicz M. C., BalenM., Oenning Netto V., Ninow J. L., Trentin C. M., OliveiraJ. V., Oliveira D., A review on lipase-catalyzed reactions inultrasound-assisted systems, Bioprocess Biosyst Eng., 2014,37, 2381–2394.[WoS][Crossref]
  • [37] Kirilin A., Sahin S., Mäki-Arvela P., Wärnå J., Salmi T., Murzin D.,Kinetics and modeling of (R,S)-1-phenylethanol acylation overlipase, Int. J. Chem. Kinet., 2010, 42, 629-639.[WoS][Crossref]
  • [38] Hirata H., Kawanishi M., Iwata Y., Sakaki K., Yanagishita H.,Kinetic studies on lipase-catalyzed acetylation of 2-alkanol 309-317.
  • [39] Jung H., Koh J., Kim M., Park J., Practical ruthenium/lipasecatalyzed asymmetric transformations of ketones and enolacetates to chiral acetates, Org. Lett., 2000, 2, 2487-2490.[Crossref]
  • [40] Verzijl G., de Vries J., Broxterman Q., Removal of the acyl donorresidue allows the use of simple alkyl esters as acyl donorsfor the dynamic kinetic resolution of secondary alcohols,Tetrahedron: Asymmetry, 2005,16, 1603-1610.[Crossref]
  • [41] Nawani N., Singh R., Kaur J., Immobilization and stabilitystudies of a lipase from thermophilic Bacillus sp: the effect ofprocess parameters on immobilization of enzyme, Electron. J.Biotechn., 2006, 9, 0-0.[Crossref]
  • [42] Yadav G., Borkar I., Kinetic and mechanistic investigation ofmicrowave-assisted lipase catalyzed synthesis of citronellylacetate, Ind. Eng. Chem. Res., 2008, 48, 7915-7922.[WoS]
  • [43] Souza R., Matos L., Gonçalves K., Costa I., Babics I., LeiteS., Oestreicher E., Antunes O., Michael additions of primaryand secondary amines to acrylonitrile catalyzed by lipases,Tetrahedron Lett., 2009, 50, 2017-2018.[Crossref]
  • [44] Nechab M., Azzi N., Vanthuyne N., Bertrand M., Gastaldi S.,Gil G., Highly selective enzymatic kinetic resolution of primaryamines at 80 c: a comparative study of carboxylic acids andtheir ethyl esters as acyl donors, J. Org. Chem., 2007,72,6918–6923.[WoS]
  • [45] Tsuchihashi G., Iriuchijima S., Maniwa K., Asymmetricsynthesis using α-sulfinylcarbanions. II. Synthesis of opticallyactive amines, Tetrahedron Lett., 1973, 14, 3389–3392.[Crossref]
  • [46] Masutani K., Minowa T., Hagiwara Y., Mukaiyama T., Cyanationof alcohols with diethyl cyanophosphonate and 2,6-dimethyl-1,4-benzoquinone by a new type of oxidation–reductioncondensation, Bull. Chem. Soc. Jpn., 2009, 79, 1106-1117.
  • [47] Enders D., Harnying W., A highly efficient asymmetric synthesisof homotaurine derivatives via diastereoselective ring-openingof γ-sultones, Synthesis, 2004, 17, 2910-2918.
  • [48] Garcia-Urdiales E., Rebolledo F., Gotor V., Enzymaticone-pot resolution of two nucleophiles: alcohol and amine,Tetrahedron. Asymmetry, 2000, 11, 1459-1463.[Crossref]
  • [49] Skupinska K., McEachern E., Baird I., Skerlj R., BridgerG., Enzymatic resolution of bicyclic 1-heteroarylaminesusing Candida antarctica lipase B, J. Org. Chem., 2003, 68,3546-3551.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_boca-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.