PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 1 | 1 |
Article title

Halogenation of β-estradiol by a rationally designed mesoporous biocatalyst based on chloroperoxidase

Content
Title variants
Languages of publication
EN
Abstracts
EN
Chloroperoxidase from Caldariomyces
fumago was immobilized in Eupergit® C, a commercial
mesoporous acrylic-based material. Due to low stability
of the enzyme under neutral and basic pH, the usual
covalent immobilization procedures cannot be applied
to this enzyme. Several strategies were followed in order
to achieve a stable interaction between the protein and
the support. The support was efficiently functionalized
with different reactive groups such as aromatic and
aliphatic amines, glutaraldehyde, diazonium ions, and
maleimide moieties; solvent-exposed amino acid residues
in chloroperoxidase were identified or created through
chemical modification, so that they were reactive under
conditions where the enzyme is stable. Enzyme load and
retained activity were monitored, obtaining biocatalysts
with specific activity ranging from 200 to 25,000 U/g.
The highest load and activity was obtained from the
immobilization of a chemically-modified CPO preparation
bearing a solvent-exposed free thiol group. This biocatalyst
efficiently catalyzed the transformation of β-estradiol, an
endocrine disruptor.
Publisher

Journal
Year
Volume
1
Issue
1
Physical description
Dates
received
23 - 2 - 2015
online
29 - 4 - 2015
accepted
5 - 4 - 2015
Contributors
  • Instituto de Biotecnología, UNAM. Av. Universidad
    2001, Chamilpa 62210 Cuernavaca, Mor. México
  • Posgrado en Ciencias Ambientales,
    Instituto de Ciencias, Benemérita Universidad Autónoma
    de Puebla. Edificio 103 G Ciudad Univesitaria 72570. Puebla, Pue.
    México
author
  • Posgrado en Ciencias Ambientales,
    Instituto de Ciencias, Benemérita Universidad Autónoma
    de Puebla. Edificio 103 G Ciudad Univesitaria 72570. Puebla, Pue.
    México
author
  • Instituto de Biotecnología, UNAM. Av. Universidad
    2001, Chamilpa 62210 Cuernavaca, Mor. México
References
  • [1] Ruiz-Dueñas F.J., Martinez, A.T., Structural and funcionalfeatures of peroxidases with a potential as industrialbiocatalysts. In Biocatalysis Based on Heme Peroxidases(Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010).
  • [2] Ortiz de Montellano, P.R., Catalytic mechanisms of hemeperoxidases. In Biocatalysis Based on Heme Peroxidases(Torres E., Ayala M., Eds.), Springer Berlin Heidelberg (2010).
  • [3] Casella, L., Monzani, E., Nicolis, S., Potential applicationsof peroxidases in the fine chemicl industries. In BiocatalysisBased on Heme Peroxidases (Torres E., Ayala M., Eds.),Springer Berlin Heidelberg (2010).
  • [4] Torres-Duarte C., Vazquez-Duhalt R., Applications andprospective of peroxidase biocatalysis in the environmentalfield. In Biocatalysis Based on Heme Peroxidases (Torres E.,Ayala M., Eds.), Springer Berlin Heidelberg (2010).
  • [5] Dunford, H.B., Chloroperoxidase from C. fumago. InPeroxidases and catalases: biochemistry, biophysics,biotechnology and physiology, 2nd edition, John Wiley & Sons(2010).
  • [6] Ayala, M., Hernandez-Lopez E.L., Perezgasga, L., Vazquez-Duhalt, R. Reduced coke formation and aromaticity due tochloroperoxidase-catalyzed transformation of asphaltenesfrom Maya crude oil, Fuel, 2012, 92, 245-249.[WoS][Crossref]
  • [7] Hernandez-Lopez, E.L., Ayala, M., Vazquez-Duhalt, R., Microbialand enzymatic biotransformations of asphaltenes, Petrol. Sci.Technol., In press.
  • [8] Longoria, A., Hu, H., Vazquez-Duhalt, R., Enzymatic synthesisof semiconductor polymers by chloroperoxidase fromCaldariomyces fumago, Appl. Biochem. Biotechnol., 2010, 162,927-934[WoS]
  • [9] Piantini, U., Schader, J., Wawrzun, A., Wust, M., A biocatalyticroute towards rose oxide using chloroperoxidase, Food Chem.,2011, 129, 1025-1029.[WoS]
  • [10] Gao, F., Wang, L., Liu, Y., Wang, S., Jiang, Y., Hu, M., Li, S., Zhai,Q., Enzymatic synthesis of (R)-modafinil by chloroperoxidasecatalyzedenantioselective sulfoxidation of 2 (diphenylmethylthio) acetamide, Biochem. Eng. J., 2015, 93, 243-249.[WoS]
  • [11] Águila S., Vazquez-Duhalt R., Covarrubias C., Pecchi G.,Alderete J.B., Enhancing oxidation activity and stability ofiso-1-cytochrome c and chloroperoxidase by immobilization innanostructured supports, J. Mol. Catal. B., 2011, 70, 81-87.[WoS]
  • [12] Aoun S., Chebli C., Baboulene M., Noncovalent immobilizationof chloroperoxidase onto talc: catalytic properties of a newbiocatalyst, Enz. Microb. Technol., 1998, 23, 380-385.[Crossref]
  • [13] Han Y., Watson J.T., Stucky G.D., Butler A., Catalytic activity ofmesoporous silicate-immobilized chloroperoxidase, J. Mol.Catal. B., 2002, 17, 1-8[Crossref]
  • [14] Hartmann M., Streb C., Selective oxidation of indole by chloroperoxidaseimmobilized on the mesoporous molecular sieveSBA-15, J. Porous Mater., 2006, 13, 347-352.
  • [15] Terrés E., Montiel M., Le Borgne S., Torres E., Immobilization ofchloroperoxidase on mesoporous materials for the oxidationof 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfurcompound present in petroleum fractions, Biotechnol. Lett.,2008, 30, 173-179.[WoS]
  • [16] Aburto J., Ayala M., Bustos-Jaimes I., Montiel C., Terres E.,Dominguez J.M., Torres E., Stability and catalytic propertiesof chloroperoxidase immobilized on SBA-16 mesoporousmaterials, Micro. Meso. Mat., 2005, 83, 193-200.
  • [17] Bakker M., van de Velde F., van Rantwijk F., Sheldon R.A.,Highly efficient immobilization of glycosylated enzymes intopolyurethane foams, Biotechnol. Bioeng., 2000, 70, 342-348.
  • [18] Bayramoğlu G., Kiralp S., Yilmaz M., Toppare L., Arıca M.Y.,Covalent immobilization of chloroperoxidase onto magneticbeads: Catalytic properties and stability, Biochem. Eng. J.,2008, 38, 180-188.[WoS][Crossref]
  • [19] Borole A., Dai S., Cheng C., Rodriguez M., Jr., Davison B.,Performance of chloroperoxidase stabilization in mesoporoussol-gel glass using In situ glucose oxidase peroxide generation,Appl. Biochem. Biotechnol., 2004, 113, 273-285.
  • [20] Bruns N., Tiller J.C., Amphiphilic Network as Nanoreactor forEnzymes in Organic Solvents, Nano Lett., 2004, 5, 45-48.[Crossref]
  • [21] de Hoog H.M., Nallani M., Cornelissen J.J.L.M., Rowan A.E.,Nolte R.J.M., Arends I.W.C.E., Biocatalytic oxidation bychloroperoxidase from Caldariomyces fumago in polymersomenanoreactors, Org. Biomol. Chem., 2009, 7, 4604-4610.[Crossref][WoS]
  • [22] Jung D., Paradiso M., Wallacher D., Brandt A., Hartmann M.,Formation of cross-linked chloroperoxidase aggregates in thepores of mesocellular foams: characterization by SANS andcatalytic properties, ChemSusChem, 2009, 2, 161-164.[WoS][Crossref]
  • [23] Kadima T.A., Pickard M.A., Immobilization of chloroperoxidaseon aminopropyl-glass, Appl. Environ. Microbiol., 1990, 56,3473-3477.
  • [24] Petri A., Gambicorti T., Salvadori P., Covalent immobilization ofchloroperoxidase on silica gel and properties of the immobilizedbiocatalyst, J. Mol. Catal. B., 2004, 27, 103-106.[Crossref]
  • [25] Wang W., Xu Y., Wang D.I.C., Li Z., Recyclable nanobiocatalystfor enantioselective sulfoxidation: facile fabrication and highperformance of chloroperoxidase-coated magnetic nanoparticleswith iron oxide core and polymer shell, J. Am. Chem. Soc., 2009,131, 12892-12893.[WoS]
  • [26] Lambeir A.M., Dunford H.B., A kinetic and spectral study ofthe alkaline transitions of chloroperoxidase, Arch. Biochem.Biophys., 1983, 220, 549-556.
  • [27] Boller, T., Meier, C., Menzler, S., Eupergit oxirane acrylic beads:how to make enzymes fit for biocatalysis, Org. Proc. Res. Dev.,2002, 6, 509-519.[Crossref]
  • [28] Hollenberg P.F., Hager L.P., Purification of chloroperoxidase fromCaldariomyces fumago, Methods Enzymol., 1978, 52, 521-529.
  • [29] Hansen R.E., Østergaard H., Nørgaard P., Winther J.R., Quantificationof protein thiols and dithiols in the picomolar rangeusing sodium borohydride and 4,4-dithiodipyridine, Anal.Biochem., 2007, 363, 77-82.[WoS]
  • [30] Yoder L., Adaptation of the Mohr volumetric method to generaldeterminations of chlorine, J. Ind. Chem. Eng., 1919, 11, 755-755.[Crossref]
  • [31] Lide D.R., Haynes W.M., CRC handbook of chemistry and physics:a ready-reference book of chemical and physical data, CRC, BocaRaton, Fla, 2009.
  • [32] Waterhouse A.L., Determination of total phenolics. In CurrentProtocols in Food Analytical Chemistry, John Wiley & Sons, Inc.(2001).
  • [33] Doerge D.R., Divi R.L., Churchwell M.I., Identification of thecolored guaiacol oxidation product by peroxidases, Anal.Biochem., 1997, 250, 10-17.
  • [34] Hermanson G.T., Chapter 2 - The Chemistry of Reactive Groups.in Bioconjugate Techniques (Second Edition) (Hermanson G.T.,Ed.), Academic Press, New York, (2008).
  • [35] Longoria A., Tinoco R., Torres E., Enzyme technology ofperoxidases: immobilization, chemical and genetic modification.in Biocatalysis based on heme peroxidases (Torres E., Ayala M.,Eds.), Springer, Germany, (2010).
  • [36] Sokolovsky M., Riordan J.F., Vallee B.L., Tetranitromethane.A reagent for the nitration of tyrosyl residues in proteins,Biochemistry, 1966, 5, 3582-3589.[Crossref]
  • [37] van Deurzen M.P.J., Groen B.W., van Rantwijk F., Sheldon R.A., Asimple purification method for chloroperoxidase and its use inorganic media, Biocatal. Biotrans., 1994, 10, 247-255.[Crossref]
  • [38] Barbosa O., Torres R., Ortiz C., Berenguer-Murcia Á., RodriguesR.C., Fernandez-Lafuente R., Heterofunctional supports inenzyme immobilization: from traditional immobilizationprotocols to opportunities in tuning enzyme properties,Biomacromol., 2013, 14, 2433-2462.[Crossref]
  • [39] Cavalieri E., Rogan E., Chakravarti D., The role of endogenouscatechol quinones in the initiation of cancer and neurodegenerativediseases. In Methods in Enzymology (Helmut S., LesterP., Eds.), Academic Press (2004).
  • [40] Hayes C.L., Spink D.C., Spink B.C., Cao J.Q., Walker N.J., SutterT.R., 17 beta-estradiol hydroxylation catalyzed by humancytochrome P450 1B1, PNAS, 1996, 93, 9776-9781.
  • [41] Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., Inagaki S.,Catalytic Activity in organic solvents and stability of immobilizedenzymes depend on the pore size and surface characteristics ofmesoporous silica, Chem. Mater., 2000, 12, 3301-3305.[Crossref]
  • [42] Lei C., Shin Y., Liu J., Ackerman E.J., Entrapping enzyme in afunctionalized nanoporous support, J. Am. Chem. Soc., 2002,124, 11242-11243.
  • [43] Zhou Z., Hartmann M., Progress in enzyme immobilization inordered mesoporous materials and related applications, Chem.Soc. Rev., 2013, 42, 3894-3912.[Crossref]
  • [44] Liehr J.G., Is estradiol a genotoxic mutagenic carcinogen?,Endocrine Rev., 2000, 21, 40-54.
  • [45] Fent K., Weston A.A., Caminada D., Ecotoxicology of humanpharmaceuticals, Aquat. Toxicol., 2006, 76, 122-159.
  • [46] Liu X., Zhang F., Liu H., Burdette J.E., Li Y., Overk C.R., PishaE., Yao J., van Breemen R.B., Swanson S.M., et al., Effect ofhalogenated substituents on the metabolism and estrogeniceffects of the equine estrogen, equilenin, Chem. Res. Toxicol.,2003, 16, 741-749.[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_1515_boca-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.