Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 2 | 1 |

Article title

Biomonitoring and assessing total mercury
concentrations and pools in forested areas

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article focusses on the bio-monitoring of
total Hg (THg), sulfur (TS) and carbon (TC) concentrations
and pool sizes in forest vegetation and soil layers within
the context of a maritime-to-inland transect study in
southwestern New Brunswick. This transect stretches
from the Grand Manan Island in the Bay of Fundy to the
mainland coast (Little Lepreau to New River Beach) and
100 km northward to Fredericton. Along the Bay, frequent
summer fogs are thought to have led to increased THg
concentrations in forest vegetation and soils such that
island THg > coast THg > inland THg concentrations.
Transect sampling was done in two phases: (i) a general
vegetation and soil survey, and (ii) focusing on specific
soil layers (forest floor, top portion of the mineral soils),
and select moss and mushrooms species. By way of
multiple regression, it was found that soil, moss and
mushroom THg and TS were strongly related to one
another, with THg decreasing from the island to the inland
locations. The accumulated Hg pool within the mineral
soil, however, far exceeded (i) the estimated THg pools of
the forest biomass (trees, moss and mushrooms) and the
forest floor, and (ii) the literature-reported and case-study
inferred net input/output rates for annual atmospheric
Hg deposition and sequestration, Hg volatilization,
and Hg leaching. Partitioning the total soil Hg pool into
geogenically and atmospherically derived portions
suggested that mineral soils in temperate to boreal forest
regions have accumulated and retained atmospherically
derived Hg over thousand years and more. These results
are summarized in terms of further guiding forest THg
monitoring and modelling efforts in terms of specific
vegetation and soil sampling targets.

Publisher

Journal

Year

Volume

2

Issue

1

Physical description

Dates

accepted
10 - 12 - 2015
received
22 - 8 - 2015
online
25 - 2 - 2016

Contributors

author
  • Faculty of Forestry and Environmental Management,
    University of New Brunswick, Fredericton, E3B 5A3, New Brunswick,
    Canada
author
  • Faculty of Forestry and Environmental Management,
    University of New Brunswick, Fredericton, E3B 5A3, New Brunswick,
    Canada

References

  • ---
  • [1] Miller E.K., Vanarsdale A., Keeler G.J., Chalmers A., Poissant L.,Kamman N.C., Brulotte R. Estimation and mapping of wet anddry mercury deposition across northeastern North America,Ecotoxicol., 2005, 14, 53-70.[Crossref]
  • [2] Kolka R.K., Mitchell C.P.J., Jeremiason J.D., Hines N.A., GrigalD.F., Engstrom D.R., Coleman- Wasik J.K., Nater E.A., SwainE.B., Monson B.A., Fleck J.A., Johnson B., Almendinger J.E.,Branfireun B.A., Brezonik P.L., Cotner J.B. Mercury cyclingin peatland watersheds, In: Kolka R, Sebestyen S, Verry ES,Brooks K (Eds.), Peatland biogeochemistry and watershedhydrology at the Marcell Experimental Forest, CRC Press, 2011,349-370.
  • [3] Schröder W., Pesch P., Hertel A., Schonrock S., Harmens H.,Mills G., Ilyin I. Correlation between atmospheric deposition ofCd, Hg and Pb and their concentrations in mosses specified forecological land classes covering Europe, Atm. Pollut. Research.2013, 4, 267-274.
  • [4] Demers J.D., Blum J.D., Zak D.R. Mercury isotopes in a forestecosystem: implications for air-surface exchange dynamics andthe global mercury cycle, Global Biogeochem. Cycles, 2013, 27,222-238.
  • [5] Berg T., Fjeld E., Steinnes E. Atmospheric mercury in Norway:contributions from different sources, Sci. Total Environ., 2006,368, 3-9.
  • [6] Gramatica P., Battaini F., Giani E., Papa E., Jones R.J., PreatoniD., Cenci R.M. Analysis of mosses and soils for quantifyingheavy metal concentrations in Sicily: a multivariate and spatialanalytical approach, Environ. Sci. Pollut. Res. Int., 2006, 13,28-36.[Crossref]
  • [7] Bash J.O., Bresnahan P., Miller D.R. Dynamic surface interfaceexchanges of mercury: a review and compartmentalizedmodeling framework, J. Appl. Meteorol. Clim., 2007, 46,1606-1618.[Crossref]
  • [8] Nasr M., Malloch D.W., Arp P.A. Quantifying Hg within ectomycorrhizalfruiting bodies, from emergence to senescence,Fungal Biol., 2012, 116, 1163-1177.[Crossref]
  • [9] Kos A., Rajfur M., Šrámek I., Wac M. Mercury concentrationin lichen, moss and soil samples collected from the forestareas of Praded and Glacensis Euroregions (Poland and CzechRepublic), Environ. Monitor. Assess., 2012, 184, 6765-6774.
  • [10] Frescholtz T.E., Gustin M.S., Schorran D.E., Fernandez G.C.Assessing the source of mercury in foliar tissue of quakingaspen, Environ. Toxicol. Chem., 2003, 22, 2114-2119.[Crossref]
  • [11] Stamenkovic J., Gustin M.S. Nonstomatal versus stomataluptake of atmospheric mercury, J. Environ. Sci. Technol., 2009,43, 1367-1372.[Crossref]
  • [12] Garty J. Biomonitoring atmospheric heavy metals with lichens:Theory and Application, Crit. Rev. Plant. Sci., 2001, 20,309-371.[Crossref]
  • [13] Gjengedal E., Steinnes E. Uptake of metal ions in moss fromartificial precipitation, Environ. Monitor. Assess., 1990, 14,77-87.[Crossref]
  • [14] Rühling A., Tyler G. Changes in the atmospheric depositionof minor and rare elements between 1975 and 2000 in southSweden, as measured by moss analysis, Environ. Pollut. 2004,131, 417-423.
  • [15] Harmens H., Norris D.A., Steinnes E., Kubin E., Piispanen J.,Alber R., Aleksiayenak Y., Blum O., Coskun M., Dam M., De T.L.,Fernandez J.A., Frolova M., Frontasyeva M., Gonzalez-MiqueoL., Grodzinska K., Jeran Z., Korzekwa S., Krmar M., Kvietkus K.,Leblond S., Liiv S., Magnusson S.H., Mankovska B., Pesch R.,Ruhling A., Santamaria J.M., Schroder W., Spiric Z., Suchara I.,Thoni L., Urumov V., Yurukova L., Zechmeister H.G. Mosses asbiomonitors of atmospheric heavy metal deposition: spatialpatterns and temporal trends in Europe, Environ. Pollut., 2010,158, 3144-3156.
  • [16] Evans C.A., Hutchinson T.C. Mercury accumulation intransplanted moss and lichens at high elevation sites inQuebec, Water Air Soil Pollut., 1996, 90, 475-488.
  • [17] Steinnes E., Berg T., Sjobakk T.E. Temporal and spatial trends inHg deposition monitored by moss analysis, Sci. Total Environ.2003, 304, 215-219.
  • [18] Glooschenko W.A., Capobianco J.A. Metal content of Sphagnummosses from two Northern Canadian bog ecosystems, Water AirSoil Poll., 1978, 10, 215-220.[Crossref]
  • [19] Svoboda L., Zimmermannova K., Kalac P. Concentrations ofmercury, cadmium, lead and copper in fruiting bodies of ediblemushrooms in an emission area of a copper smelter and amercury smelter, Sci Total Environ., 2000, 246, 61-67.
  • [20] Svoboda L., Havlícková B., Kalac P. Contents of cadmium,mercury and lead in edible mushrooms growing in a historicalsilver-mining area. Food Chem. 2006, 96, 580-585.[Crossref]
  • [21] Chudzynski K., Bielawski L., Falandysz J. Mercury bio-concentrationpotential of Larch Bolete, Suillus grevillei, mushroom,Bull. Environ. Contam. Toxicol., 2009, 83, 275-279.[Crossref]
  • [22] Ettler V., Rohovec J., Navrátil T., Mihaljevic M. Mercurydistribution in soil profiles polluted by lead smelting. Bull.Environ. Contam. Toxicol., 2007, 78, 13-17.[Crossref]
  • [23] Falandysz J., Frankowska A., Mazur A. Mercury and its bioconcentrationfactors in King Bolete (Boletus edulis) Bull. Fr., J.Environ. Sci. Health. Tox. Hazard. Subst. Environ. Eng. 2007a,42, 2089-2095.[Crossref]
  • [24] Falandysz J., Lipka K., Mazur A. Mercury and its bioconcentrationfactors in fly agaric (Amanita muscaria) from spatiallydistant sites in Poland. J. Environ. Sci. Health Tox. HazardSubst. Environ. Eng., 2007b, 42, 1625-1630.[Crossref]
  • [25] Grigal D.F., Kolka R.K., Fleck J.A., Nater E.A. Mercury budgetof an upland-peatland watershed, Biogeochem., 2000, 50,95-109.[Crossref]
  • [26] Grigal D.F. Mercury sequestration in forests and peatlands: areview, J. Environ. Qual., 2003, 32: 393-405.[Crossref]
  • [27] Rea A.W., Lindberg S.E., Keeler G.J. Dry deposition and foliarleaching of mercury and selected trace elements in deciduousforest throughfall, Atm. Environ., 2001, 35, 3453-3462.
  • [28] Ericksen J.A., Gustin M.S., Schorran D.E., Johnson D.W.,Lindberg S.E., Coleman J.S. Accumulation of atmosphericmercury in forest foliage, Atm. Environ., 2003, 37, 1613-1622.
  • [29] Risch M.R., Dewild J.F., Krabbenhoft D.P., Kolka R.K., Zhang L.Litterfall mercury dry deposition in the eastern USA, Environ.Pollut., 2012, 161, 284-290.
  • [30] Juillerat J.I., Ross D.S., Bank M.S. Mercury in litterfall and uppersoil horizons in forested ecosystems in Vermont, USA., Environ.Toxicol. Chem., 2012, 8,1720-9.[Crossref]
  • [31] Demers J.D., Driscoll C.T., Fahey T.J., Yavitti J.B. Mercury cyclingin litter and soil in different forest types in the Adirondackregion, New York, USA., Ecol. Appl., 2007, 17, 1341-1351.[Crossref]
  • [32] Schwesig D., Matzner E. Dynamics of mercury and methylmercuryin forest floor and runoff of a forested watershed incentral Europe. Biogeochem. 2001, 53, 181-200.[Crossref]
  • [33] Ravichandran, M. Interactions between mercury and dissolvedorganic matter–a review. Chemosphere 2004, 55, 319–331.[Crossref]
  • [34] Kalbitz K., Solinger S., Park J.-H., Michalzik B., Matzner E.Controls on the dynamics of dissolved organic matter in soils: Areview. Soil Sci. 165, 277-304
  • [35] Selvendiran P., Driscoll C.T., Bushey J.T., Montesdeoca M.R.Wetland influence on mercury fate and transport in a temperateforested watershed, Environ Pollut., 2008, 154, 46-55.
  • [36] Vidon P.G., Mitchell C.P. Jacinthe P.A., Baker M.E., Liu X., FisherK.R. Mercury dynamics in groundwater across three distinctriparian zone types of the US Midwest, Environ Sci ProcessImpacts, 2013, 15, 2131-2141.
  • [37] Stoor R.W., Hurley J.P., Babiarz C.L. Armstrong D.E., Subsurfacesources of methyl mercury to Lake Superior from a wetlandforestedwatershed, Sci Total Environ., 2006, 368, 99-110.
  • [38] Vidon P.G., Mitchell C.P.J., Jacinthe P.-A., Baker M.E., Liu X.,Fisher K.R. Mercury dynamics in groundwater across threedistinct riparian zone types of the US Midwest. Environ. Sci.:Processes Impacts, 2013, 15, 2131-2141
  • [39] Revis N.W., Osborne T.R., Holdsworth G., Hadden C. Mercuryin soil - a method for assessing acceptable limits, ArchivesEnviron. Contam. Toxicol., 1990, 19, 221-226.[Crossref]
  • [40] Cia Y., Jaff R., Jones R.D. Interactions between dissolved organiccarbon and mercury species in surface waters of the FloridaEverglades, Appl. Geochem. 1999, 14, 395-407.
  • [41] Gabriel M.C., Williamson D.G. Principal biogeochemical factorsaffecting the speciation and transport of mercury through theterrestrial environment, Environ. Geochem. Health, 2004, 26,421-434.[Crossref]
  • [42] Skyllberg U., Bloom P.R., Qian J., Lin C.M., Bleam W.F.Complexation of mercury(II) in soil organic matter: EXAFSevidence for linear two-coordination with reduced sulfurgroups, J. Environ. Sci. Technol., 2006, 40, 4174-4180.[Crossref]
  • [43] Kerin E.J., Gilmour C.C., Roden E., Suzuki M.T., Coates J.D.,Mason R.P. Mercury methylation by dissimilatory iron-reducingbacteria, Appl. Environ. Microbiol., 2006, 72, 7919-7921.[Crossref]
  • [44] Schlüter K. Review: evaporation of mercury from soils. Anintegration and synthesis of current knowledge, Environ. Geol.,2000, 39, 249-271.[Crossref]
  • [45] Maprani A.C., Al T.A., Macquarrie K.T., Dalziel J.A., Shaw S.A.,Yeats P.A. Determination of mercury evasion in a contaminatedheadwater stream, J. Environ. Sci. Technol., 2005, 39,1679-1687.[Crossref]
  • [46] Kirk J.L., St Louis V.L., Sharp M.J. Rapid reduction andreemission of mercury deposited into snowpacks duringatmospheric mercury depletion events at Churchill, Manitoba,Canada, J. Environ. Sci. Technol., 2006, 40, 7590-7596.[Crossref]
  • [47] Faïn X., Helmig D., Hueber J., Obrist D., Williams M.M. Mercurydynamics in the Rocky Mountain, Colorado, Snowpack.Biogeosci. Discussion, 2012, 9, 15423-15458.
  • [48] Schwesig D., Krebs O. The role of ground vegetation in theuptake of mercury and methyl mercury in a forest ecosystem,Plant Soil, 2003, 253, 445-455.
  • [49] Choi H.D., Holsen T.M. Gaseous mercury fluxes from the forestfloor of the Adirondacks, Environ. Pollut., 2009, 157, 592-600.
  • [50] Johnson D.W., Benesch J.A., Gustin M.S., Schorran D.S.,Lindberg S.E., Coleman J.S. Experimental evidence againstdiffusion control of Hg evasion from soils, Sci. Total Environ.,2003, 304, 175-184.
  • [51] Nasr M., Arp P.A. Hg concentrations and accumulations infungal fruiting bodies, as influenced by forest soil substratesand moss carpets, Appl Geochem., 2011, 26, 1905-1917.[Crossref]
  • [52] Mitchell C.P., Kolka R.K., Fraver S. Singular and combinedeffects of blowdown, salvage logging, and wildfire on forestfloor and soil mercury pools, J. Environ. Sci. Technol., 2012, 46,7963-7970.[Crossref]
  • [53] Broster B.E., Dickson M.L., Parkhill M.A. Comparison of humusand till as prospecting material in areas of thick overburdenand multiple ice-flow events: an example from northeasternNew Brunswick, J. Geochem. Explor., 2009, 103, 115-132.
  • [54] Xia K., Skyllberg U.L., Bleam W.F., Bloom P.R., Nater E.A.,Helmke P.A. X-ray absorption spectroscopic evidence forthe complexation of Hg (II) by reduced sulfur in soil humicsubstances, J. Environ. Sci. Technol., 1999, 33, 257-261.[Crossref]
  • [55] U.S. Geological Survey (USGS) North America Soil GeochemicalLandscape Project (NAS-GLP), 2011, USGS, U.S. Department ofthe Interior.
  • [56] Goodwin T.A. Geogenic mercury in glacial till, KejimkujikNational Park, In: O’Driscoll N.J., Rencz A.N., Lean D.R.S.(Eds.), Mercury cycling in a wetland - dominated ecosystem:a multidisciplinary study, Soc Environ Toxicol Chem (SETAC),Pensacola, Florida, 2005,. 229-246.
  • [57] Parsons M.B., Little M.E., Goodwin T.A. Background concentrationsof arsenic and mercury in soils from the Montague andGoldenville gold districts, Nova Scotia, Atlantic Geol., 2008,44, 3.
  • [58] Ketris M.P., Yudovich Y.E. Estimations of Clarkes forCarbonaceous biolithes: world averages for trace elementcontents in black shales and coals, Int. J. Coal. Geol., 2009, 78,135-148.[Crossref]
  • [59] Farrah H., Pickering W.F. Sorption of mercury species byclay-minerals, Water Air Soil Pollut., 2014, 9, 23-31.
  • [60] Patra M., Sharma A. Mercury toxicity in plants, BotanicalReview, 2000, 66, 379-422.[Crossref]
  • [61] Martínez-Trinidad S., Silva G.H., Islas M.E.R., Reyes J.M.,Munguía G.S., Valdez S.S., Martíne R.G. Total mercury interrestrial systems (air-soil-plant-water) at the mining region ofSan Joaquín, Queretaro, Mexico, Geofísica Int., 2013, 52, 43-58.
  • [62] Gnamuš A., Byrne A.R., Horvat M. Mercury in the soil-plantdeer-predator food chain of a temperate forest in Slovenia, J.Environ. Sci. Technol., 2000, 34, 3337-3345.[Crossref]
  • [63] Duffy L.K., Kaiser C., Ackley C., Richter K.S. Mercury in hair oflarge Alaskan herbivores: routes of exposure, Alces. 2001, 37,293-301.
  • [64] Berzas Nevado J.J., Rodríguez Martín-Doimeadios R.C., GuzmánBernardo F.J., Rodríguez Fariñas N., Patiño Ropero M.J. Mercuryspeciation analysis in terrestrial animal tissues, Talanta., 2012,99, 859-64, doi: 10.1016/j.talanta.2012.07.046.[Crossref]
  • [65] Tomiyasu T., Matsuo T., Miyamoto J., Imura R., Anazawa K.,Sakamoto H. Low level mercury uptake by plants from naturalenvironments - mercury distribution in Solidago altissima L.,Environ. Sci., 2005, 12, 231-238.
  • [66] Skyllberg U., Bloom P.R., Qian J., Lin C.M., Bleam W.F.Complexation of mercury (II) in soil organic matter: EXAFSevidence for linear two-coordination with reduced sulfurgroups, J. Environ. Sci. Technol., 2006, 40, 4174-4180.[Crossref]
  • [67] Taylor D.L. A new dawn - the ecological genetics of mycorrhizalfungi, New Phytologist, 2000, 147, 236-239.
  • [68] Demirbas A. Heavy metal bioaccumulation by mushrooms fromartificially fortified soils, Food Chem. 2001, 74, 293-301.[Crossref]
  • [69] Hinton J. Earthworms as a bioindicator of mercury pollution inan artisanal gold mining community, Cachoeira do Piria, Brazil,MSc Thesis, University of British Columbia, CA, 2002.
  • [70] Isildak O., Turkekul I., Elmastas M., Tuzen M. Analysis of heavymetals in some wild-grown edible mushrooms from the MiddleBlack Sea region, Turkey, Food Chem., 2004, 86, 547-552.[Crossref]
  • [71] Kalac P., Niznanska M., Bevilaqua D., Staskova I. Concentrationsof mercury, copper, cadmium and lead in fruiting bodiesof edible mushrooms in the vicinity of a mercury smelter and acopper smelter, J. Sci. Total Environ., 1996, 177, 251-258.
  • [72] Toljander J.F., Eberhardt U., Toljander Y.K., Paul L.R., TaylorA.F.S. Species composition of an ectomycorrhizal fungalcommunity along a local nutrient gradient in a boreal forest,New Phytologist., 2006, 170, 873-883.
  • [73] Zhang Z.S., Zheng D.M., Wang Q.C., Lv X.G. Bioaccumulation oftotal and methyl Mercury in three earthworm species (Drawidasp., Allolobophora sp., and Limnodrilus sp.), Bull. Environ.Contam. Toxicol., 2009, 83, 937-942.[Crossref]
  • [74] Chudzyński K., Bielawski L., Falandysz J. Mercury bio-concentrationpotential of larch bolete, Suillus grevillei, mushroom,Bull. Environ. Contam. Toxicol., 2009, 83, 275-279.[Crossref]
  • [75] Evers D.C., Han Y.J., Driscoll C.T., Kamman N.C., GoodaleM.W., Lambert K.F., Holsen T.M., Chen C.Y., Clair T.A., Butler T.Biological mercury hotspots in the northeastern United Statesand southeastern Canada, Biosci., 2007, 57, 29-43.[Crossref]
  • [76] Burt M.D.B. and Wells P.G. Threats to the health of the Bay ofFundy: potential problems posed by pollutants, In: Burt, M.D.B.and Wells, P.G. (Eds.), BoFEP Technical Report No. 5. 12-1-2010Wolfville, NS, Bay of Fundy Ecosystem Partnership (30 April2010, St. Andrews, New Brunswick, CA), Proceedings of aWorkshop organized under the auspices of BoFEP’s WorkingGroup on Stress and Cumulative Effects, 2010, 1-72.
  • [77] Pilgrim W., Poissant L., Trip L. The northeast states and easternCanadian provinces mercury study: a framework for action,summary of the Canadian Chapter, Sci. Total Environ., 2000,261, 177-184.
  • [78] Weathers K.C., Lovett G.M., Likens G.E., Lathrop R. The effect oflandscape features on deposition to Hunter Mountain, CatskillMountains, New York, Ecol. Applicat., 2000, 10, 528-540.[Crossref]
  • [79] Ritchie C.D., Richards W., Arp P.A. Mercury in fog on the Bay ofFundy (Canada), Atm. Environ., 2006, 40, 6321-6328.
  • [80] Weiss-Penzias P.S., Ortiz Jr. C., Acosta R.P., Heim W., Ryan J.P.,Fernandez D., Collett Jr. J.L., Flegal A.R. Total and monomethylmercury in fog water from the central California coast,Geophys. Res. Letters., 2012, 39, L03804.
  • [81] Canadian Soil Information System (CanSIS), Agriculture andAgri-food Canada, CanSIS - Soil Survey Report of SouthwesternNew Brunswick, Canadian Soil Information System, 2008.
  • [82] Clifford M.J., Hilson G.M., Hodson M.E. Tin and mercury, In:Hooda P.S. (Ed.), Trace elements in soils, John Wiley & Sons,Ltd, Blackwell Publishing Ltd, Chichester, UK, 2010.
  • [83] Siwik E.I., Campbell L.M., Mierle G. Fine-scale mercury trendsin temperate deciduous tree leaves from Ontario, Canada, Sci.Total Environ., 2009, 1407, 6275-6279.
  • [84] Poissant L., Pilote M., Yumvihoze E., Lean D. Mercury concentrationsand foliage/atmosphere fluxes in a maple forestecosystem in Quebec, Canada, J. Geophys. Res.: Atmos., 2008,113 D10.
  • [85] Keys. K., Arp P.A. Nova Scotia Forest Biomass Project,University of New Brunswick, Forest Watershed ResearchCentre, 2009.
  • [86] Wang J.J., Guo Y.Y., Guo D.L., Yin S.L., Kong D.L., Liu YS, ZengH. Fine root mercury heterogeneity: metabolism of lower-orderroots as an effective route for mercury removal, J. Environ. Sci.Technol., 2012, 46, 769-777.[Crossref]
  • [87] Jones V.A.S., Dolan L. The evolution of root hairs and rhizoids.Annals of Botany, 2012, p. 1-8, doi:10.1093/aob/mcs136.[Crossref]
  • [88] Culgin BM. Mercury in till and bedrock southeast of KejimkujikNational Park, Nova Scotia. Atl. Geol. 2006 42.
  • [89] de Vos W, Gregorauskiene V, Marsina K, Salminen R, SalpeteurI, Tarvainen T, O’Connor PJ, Demetriades A, Pirc S, Batista MJ,Bidove M. Distribution of elements in subsoil and topsoil:http://weppi.gtk.fi/publ/foregsatlas/articles/Soil.pdf.Accessed 21. April 2014.
  • [90] Pokharel A.K., Obrist D. Fate of mercury in tree litter duringdecomposition, Biogeosci., 2011, 8, 2507-2521.[Crossref]
  • [91] Zhang C.F., Meng F.R., Trofymow J.A., Arp P.A. Modeling massand nitrogen remaining in litterbags for Canadian forest andclimate conditions, Can. J. Soil Sci., 2007, 87,413-432.[Crossref]
  • [92] Blair J.M., Nitrogen, sulfur and phosphorus dynamics indecomposing deciduous litter in the southern Appalachians,Soil Biol. Biochem., 1988, 60, 693-701.[Crossref]
  • [93] Johnson, D.W., Lindberg, S.E. Atmospheric deposition andforest nutrient cycling: A synthesis of the integrated foreststudy. Ecological Series 91, Springer, New York, 1992. 707 pp.
  • [94] Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A. Rootbiomass allocation in the world’s upland forests. Oecologia.1997: 111, 1–11.[Crossref]
  • [95] Li Z., Kurz W.A., Apps M.J., Beukema S.J. Belowground biomassdynamics in the Carbon Budget Model of the CanadianForest Sector: recent improvements and implications for theestimation of NPP and NEP. Can. J. Forest Research. 2003; 33:126-136.[Crossref]
  • [96] Xing Z., Bourque C.P., Swift D.E., Clowater C.W., Krasowski M.,Meng F.R. Carbon and biomass partitioning in balsam fir (Abiesbalsamea). Tree Physiol. 2005; 25: 1207-1217.[Crossref]
  • [97] Hazlett P.W., Gordon A.M., Sibley P.K., Buttle J.M. Stand carbonstocks and soil carbon and nitrogen storage for riparian andupland forests of boreal lakes in northeastern Ontario. ForestEcol. Managem. 2005; 219: 56-58.
  • [98] Neilson E.T., MacLean D.A., Meng F.R., Arp P.A. Spatialdistribution of carbon in natural and managed stands inan industrial forest in New Brunswick, Canada. Forest Ecol.Managem. 2007.
  • [99] Wang J.J., Guo Y.Y., Guo D.L., Yin S.L., Kong D.L., Liu Y.S.,Zeng H. Fine root mercury heterogeneity: metabolism oflower-order roots as an effective route for mercury removal. J.Environ. Sci. Technol. 2012; 46: 769-777.[Crossref]
  • [100] Kranabetter J.M., Kroeger P. Ectomycorrhizal mushroomresponse to partial cutting in a western hemlock/western redcedar forest. Can J Forest Research. 2001; 31: 978-987.
  • [101] Bååth E., Söderström B. Comparison of two methods for theestimation of soil fungal lengths. Soil Biol. Biochem. 1980;12: 387.
  • [102] Söderström B.E. Seasonal fluctuations of active fungalbiomass in the horizons of a podzolized pine forest soil inCentral Sweden. Soil Biol. Biochem. 1979; 11: 149-154.[Crossref]
  • [103] Johansson J.F., Paul L.R., Finlay R.D. Microbial interactions inthe mycorrhizosphere and their significance for sustainableagriculture. FEMS Microbiol .Ecol. 2004; 48: 1-13.[Crossref]
  • [104] Porada P., Weber B., Elbert W., Pöschl U., Kleidon A.Estimating impacts of lichens and bryophytes on globalbiogeochemical cycles. Global Biogeochem. Cycles, 28,71–85.
  • [105] Nasr M. Geospatial analysis of mercury concentrations instream and lake sediments across Canada, PhD Thesis,University of New Brunswick, New Brunswick, CA, 2015.
  • [106] Shanley J.B., Bishop K. Mercury cycling in terrestrialwatershed. In: Mercury in the Environment, Pattern andprocess, Bank, M.S. (Ed.), University of California Press. (1sted.), 2012, 119-142.
  • [107] Bluth, G.J.S., Kump L.R. Lithologic and climatologic controlsof river chemistry. Geochim. Cosmochim Acta, 58, 2341-2359.
  • [108] Jutras M-F., Nasr M., Castonguay M., Pit C., Pomeroy J.H.,Smith T.P., Zhang C-F., Ritchie C.D., Meng F-R., Clair T.A.,Arp P.A. Dissolved organic carbon concentrations and fluxesin forest catchments and streams: DOC-3 model, Ecol.Modelling, 2011, 222, 2291-2313.
  • [109] Schelker J., Burns D.A., Weiler M., Laudon H. Hydrologicalmobilization of mercury and dissolved organic carbon in asnow-dominated, forested watershed: conceptualization andmodeling, J. Geophys. Res., 2011, 116, 1-17.
  • [110] Hartman J.S., Weisberg P.J., Pillai R., Ericksen J.A., Kuiken T.,Lindberg S.E., Zhang H., Rytuba J.J., Gustin M.S. Applicationof a rule-based model to estimate mercury exchange forthree background biomes in the continental United States, J.Environ. Sci. Technol., 2009, 43, 4989-4994.[Crossref]
  • [111] Su Y., Han F., Shiyab S., Monts D.L. Phytoextraction andaccumulation of mercury in selected plant species grown insoil contaminated with different mercury compounds, WM’07Conference, (February 25 - March 1, 2007, Tucson, AZ), 2007.
  • [112] Rieder S.R., Brunner I., Horvat M., Jacobs A., Frey B.Accumulation of mercury and methylmercury by mushroomsand earthworms from forest soils, 2011, 159, 2861-2869.
  • [113] Page K.D. Mercury concentrations in the bedrock ofsouthwestern Nova Scotia: a reconnaissance study. Atl.Geology 2005, 41, Number 1
  • [114] Hintelmann, H. Harris R., Heyes A., Hurley J.P., Kelly C.A.,Krabbenhoft D.P., Lindberg S., Rudd J.W.M., Scott K.J.,St.Louis V.L. Reactivity and mobility of new and old MercuryDeposition in a boreal forest ecosystem during the FirstYear of the METAALICUS Study. Environ. Sci. Technol.2002,36,5034-5040[Crossref]
  • [115] Matilainen T., Verta M., Korhonen H., Uusi-Rauva A.,Niemi M. Behavior of mercury in soil profiles: impact ofincreased precipitation, acidity, and fertilization on mercurymethylation, Water Air Soil Pollut., 2001, 125, 105-119.
  • [116] Becker-Heidmann P., Scharpenseel H-W. Studies of soilorganic matter dynamics using natural carbon isotopes, Sci.Total Environ., 1992, 117/118, 305-312.
  • [117] Obrist D., Johnson D.W., Lindberg S.E., Luo Y., Hararuk O.,Bracho R., Battles J.J., Dail D.B., Edmonds R.L., Monson R.K.,Ollinger S.V., Pallardy S.G., Pregitzer K.S., Todd D.E. Mercurydistribution across 14 U.S. Forests, Part I: spatial patterns ofconcentrations in biomass, litter, and soils, J. Environ. Sci.Technol., 2011, 45, 3974-3981.
  • [118] Obrist D., Johnson D.W., Edmonds R.L. Effects of vegetationtype on mercury concentrations and pools in two adjacentconiferous and deciduous forests, J. Plant Nutr. Soil Sci.,2012, 175, 68-77.
  • [119] Kolka R.K., Grigal D.F., Nater E.A., Verry E.S. Hydrologiccycling of mercury and organic Carbon in a forestedupland-bog watershed, Soil Sci. Soc. Am. J., 2001, 65,897-905.[Crossref]
  • [120] Blackwell B.D. and Driscoll C.T. Using foliar and forest floormercury concentrations to assess spatial patterns of mercurydeposition, Environ. Pollution., 2015, 202, 126-134.
  • [121] Arp, P.A. Turnover times for wood, forest litter and soilorganic matter, Ecological forest management handbook, GRLarocque (Ed.), CRC Press, 2016, 441-454.
  • [122] Nasr M. Mercury levels in fungal fruiting bodies frominterior and coastal forests in the Bay of Fundy region,New Brunswick, Canada. MScF Thesis. University of NewBrunswick, 2007, 195 pp.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_bimo-2015-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.