Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Characterization of Y2O3 and CeO2 doped
SiO2-SrO-Na2O glasses

Content

Title variants

Languages of publication

EN

Abstracts

EN
The structural effects of yttrium (Y) and cerium
(Ce) are investigated when substituted for sodium (Na) in
a 0.52SiO2–0.24SrO–(0.24−x)Na2O–xMO (where x = 0.08;
MO = Y2O3 and CeO2) glass series. Network connectivity
(NC) was calculated assuming both Y and Ce can act as
a network modifier (NC = 2.2) or as a network former (NC
up to 2.9). Thermal analysis showed an increase in glass
transition temperature (Tg) with increasing Y and Ce content,
Y causing the greater increase from the control (Con)
at 493∘C to 8 mol% Y (HY) at 660∘C. Vickers hardness (HV)
was not significantly different between glasses. 29Si Magic
Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR)
did not show peak shift with addition of Y, however Ce
produced peak broadening and a negative shift in ppm.
The addition of 4 mol% Ce in the YCe and LCe glasses
shifted the peak from Con at −81.3 ppm to −82.8 ppm and
−82.7 ppm respectively; while the HCe glass produced a
much broader peak and a shift to −84.8 ppm. High resolution
X-ray Photoelectron Spectroscopy for the O 1s spectral
line showed the ratio of bridging (BO) to non-bridging oxygens
(NBO), BO:NBO,was altered,where Con had a ratio of
0.7, HY decreased to 0.4 and HCe to 0.5.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

accepted
13 - 12 - 2015
online
30 - 12 - 2015
received
30 - 7 - 2015

Contributors

  • Inamori School of Engineering,
    Alfred University, Alfred NY, USA
  • Inamori School of Engineering,
    Alfred University, Alfred NY, USA
  • Materials and Surface Science Institute, University
    of Limerick, Limerick, Ireland
  • School of Materials Engineering, Purdue University,
    West Lafayette, IN, USA
  • Inamori School of Engineering,
    Alfred University, Alfred NY, USA

References

  • [1] Cao W., Hench L.L., Bioactive Materials, Ceram Int 1996, 22,439–507.[Crossref]
  • [2] Bunting S., Di Silvio L., Deb S., Hall S., Bioresorbable GlassFibres Facilitate Peripheral Nerve Regeneration, J Hand Surg2005, 30B, 242–7.[Crossref]
  • [3] Jeans L.A., Gilchrist T., Healy D., Peripheral Nerve Repair byMeans of a Flexible Biodegradable Glass FibreWrap: A Comparisonwith Microsurgical Epineurial Repair, J Plast Reconstr Aes2007, 60, 1302–8.[Crossref]
  • [4] Shelby J.E., Introduction to Glass Science and Technology, 2nded., Royal Society of Chemistry, Cambridge, UK, 2005.
  • [5] Serra J., González P., Liste S., Serra C., Chiussi S., León B.,Pérez-Amor M., Ylänen H. O., Hupa M., Ftir and Xps Studies ofBioactive Silica Based Glasses, J Non-Cryst Solids 2003, 332,20–7.
  • [6] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W., ClarkinO.M., Yates A., Evaluation of Two Novel Aluminum-Free, Zinc-Based Glass Polyalkenoate Cements as Alternatives to PmmaBone Cement for Use in Vertebroplasty and Balloon Kyphoplasty,J Mater Sci: Mater Med 2010, 21, 59–66.[Crossref]
  • [7] O’donnell M.D., Candarlioglu P.L., Miller C.A., Gentleman E.,Stevens M.M.,Materials Characterisation and Cytotoxic Assessmentof Strontium-Substituted Bioactive Glasses for Bone Regeneration,J Mater Chem 2010, 20, 8934–41.[Crossref]
  • [8] Tyas M.J., Burrow M.F., Adhesive Restorative Materials: A Review,Aust Dent J 2004, 49, 112–21.[Crossref]
  • [9] Leonelli C., Lusvardi G., Malavasi G., Menabue L., Tonelli M.,Synthesis and Characterization of Cerium-Doped Glasses andin Vitro Evaluation of Bioactivity, J Non-Cryst Solids 2003, 316,198–216.
  • [10] Vallet-Regi M., J. Salinas A., Roman J., Gil M., Effect of MagnesiumContent on the in Vitro Bioactivity of Cao-Mgo-SiO2-P2O5Sol-Gel Glasses, J Mater Chem 1999, 9, 515–8.[Crossref]
  • [11] Massera J., Hupa L., Hupa M., Influence of the Partial Substitutionof Cao with Mgo on the Thermal Properties and in Vitro Reactivityof the Bioactive Glass S53p4, J Non-Cryst Solids 2012,358, 2701–7.
  • [12] Wren A.W., Coughlan A., Placek L., Towler M.R.,GalliumContainingGlass Polyalkenoate Anti-Cancerous Bone Cements: GlassCharacterization and Physical Properties, J Mater Sci: MaterMed 2012, 23, 1823–33.[Crossref]
  • [13] Keenan T.J., Placek L.M., Mcginnity T.L., Towler M.R., Hall M.M.,Wren A.W., Relating Ion Release and Ph to in Vitro Cell Viabilityfor Gallium-Inclusive Bioactive Glasses, JMater Sci 2016, 51,1107–20.[Crossref]
  • [14] Hoppe A., Güldal N.S., Boccaccini A.R., A Review of the BiologicalResponse to Ionic Dissolution Products from BioactiveGlasses and Glass-Ceramics, Biomaterials 2011, 32, 2757–74.[Crossref]
  • [15] Roberts H.W., Vandewalle K.S., Berzins D.G., Fracture Resistanceof Amalgam/Glass-Polyalkenoate Open Sandwich ClassII Restorations: An in Vitro Study, J Dent 2008, 36, 873–7.[Crossref]
  • [16] Yoshida Y., Vanmeerbeek B., Nakayama Y., Snauwaert J., HellemansL., Lambrechts P., Vanherle G., Wakasa K., Evidence ofChemical Bonding at Biomaterial-Hard Tissue Interfaces, J DentRes 2000, 79, 709–14.[Crossref]
  • [17] Gao W., Smales R.J., Gale M.S., Flouride Release/Uptake fromNewer Glasss-Ionomer Cements Used with the Art Approach,Am J Dent 2000, 13, 201–4.
  • [18] O’donnell M.D., Hill R.G., Influence of Strontium and the Importanceof Glass Chemistry and Structure When Designing BioactiveGlasses for Bone Regeneration, Acta Biomater 2010, 6,2382–5.[Crossref]
  • [19] Massera J., Hupa L., Influence of Sro Substitution for Cao onthe Properties of Bioactive Glass S53p4, J Mater Sci Mater Med2014, 25, 657–68.[Crossref]
  • [20] Gorustovich A.A., Steimetz T., Cabrini R.L., Porto Lopez J.M., Osteoconductivityof Strontium-Doped Bioactive Glass Particles: AHistomorphometric Study in Rats, J BiomedMater Res Pt A 2010,92, 232–7.
  • [21] Nagaraja Upadhya P., Kishore G., Glass Ionomer Cement – theDifferent Generations, Trends Biomater Artif Organs 2005, 18,158–65.
  • [22] Grifln S.G., Hill R.G., Influence of Glass Composition on theProperties of Glass Polyalkenoate Cements. Part I: Influence ofAluminium to Silicon Ratio, Biomaterials 1999, 20, 1579–86.[Crossref]
  • [23] Clarkin O., Boyd D., Towler M.R., Strontium-Based GlassPolyalkenoate Cements for Luting Applications in the Skeleton,J Biomater Appl 2010, 24, 483–502.[Crossref]
  • [24] Miguez-Pacheco V., Hench L.L., Boccaccini A.R., BioactiveGlasses Beyond Bone and Teeth: Emerging Applications in Contactwith Soft Tissues, Acta Biomater 2015, 13, 1–15.[Crossref]
  • [25] Kehoe S., Zhang X.F., Boyd D., Fda Approved Guidance ConduitsandWraps for Peripheral Nerve Injury: A Review ofMaterials andEflcacy, Injury 2012, 43, 553–72.[Crossref]
  • [26] Midha R., Emerging Techniques for Nerve Repair: Nerve Transfersand Nerve Guidance Tubes, Clin Neur 2006, 53, 185–90.
  • [27] Choi D.W., Calciumand Excitotoxic Neuronal Injury, Ann NY AcadSci 1994, 747, 162–71.
  • [28] Wolf J.A., Stys P.K., Lusardi T., Meaney D., Smith D.H., TraumaticAxonal Injury Induces Calcium Influx Modulated byTetrodotoxin-Sensitive Sodium Channels, J Neurosci 2001, 21,1923–30.
  • [29] Lopachin R.M., Lehning E.J., Mechanism of Calcium Entry DuringAxon Injury and Degeneration, Toxicol Appl Pharm 1997, 143,233–44.[Crossref]
  • [30] Schubert D., Dargusch R., Raitano J., Chan S.-W., Cerium andYttriumOxide Nanoparticles Are Neuroprotective, Biochem BiophysRes Com 2006, 342, 86–91.
  • [31] Marie P.J., Ammann P., Boivin G., Rey C., Mechanisms of Actionand Therapeutic Potential of Strontiumin Bone, Calcified TissueInt 2001, 69, 121–9.[Crossref]
  • [32] Das M., Patil S., Bhargava N., Kang J.-F., Riedel L.M., Seal S.,Hickman J.J., Auto-Catalytic Ceria Nanoparticles Offer Neuroprotectionto Adult Rat Spinal Cord Neurons, Biomaterials 2007, 28,1918–25.[Crossref]
  • [33] Marquardt L.M., Day D., Sakiyama-Elbert S.E., Harkins A.B., Effectsof Borate-Based Bioactive Glass on Neuron Viability andNeurite Extension, J BiomedMater Res Pt A 2014, 102, 2767–75.
  • [34] Cacaina D., Ylanen H., Hupa M., Simon S., Study of YttriumContainingBioactive Glasses Behaviour in Simulated Body Fluid., JMater Sci: Mater Med 2006, 17, 709–16.[Crossref]
  • [35] Hill R.G., Brauer D.S., Predicting the Bioactivity of Glasses Usingthe Network Connectivity or Split Network Models, J Non-CrystSolids 2011, 357, 3884–7.
  • [36] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R.G., Structural Analysisof Bioactive Glasses, J Non-Cryst Solids 2005, 351, 173–83.
  • [37] Hill R.G., Brauer D.S., Predicting the Glass Transition Temperatureof Bioactive Glasses from Their Molecular Chemical Composition,Acta Biomater 2011, 7, 3601–5.[Crossref]
  • [38] O’donnell M.D., Predicting Bioactive Glass Properties from theMolecular Chemical Composition: Glass Transition Temperature,Acta Biomater 2011, 7, 2264–9.[Crossref]
  • [39] Zhang P., Dunlap C., Florian P., Grandinetti P.J., Farnan I., StebbinsJ.F., Silicon Site Distributions in an Alkali Silicate Glass Derivedby Two-Dimensional 29si Nuclear Magnetic Resonance, JNon-Cryst Solids 1996, 204, 294–300.
  • [40] Lockyer M.W.G., Holland D., Dupree R., Nmr Investigation of theStructure of Some Bioactive and Related Glasses, J Non-CrystSolids 1995, 188, 207–19.
  • [41] Marsich L., Moimas L., Sergo V., Schmid C., Raman SpectroscopicStudy of Bioactive Silica-Based Glasses; the Role of theAlkali/Alkali Earth Ratio on the Non-Bridging Oxygen/BridgingOxygen (Nbo/Bo) Ratio, Spectroscopy 2009, 23, 227–232.[Crossref]
  • [42] Wang H.B., Mullins M.E., Cregg J.M., Mccarthy C.W., GilbertR.J., Varying the Diameter of Aligned Electrospun Fibers AltersNeurite Outgrowth and Schwann Cell Migration, Acta Biomater2010, 6, 2970–8.[Crossref]
  • [43] Yildirim E., Dupree R., Investigation of Al-O-Al Sites in an Na-Aluminosilicate Glass, Bull Mater Sci 2004, 27, 269–72.[Crossref]
  • [44] Wren A.W., Keenan T., Coughlan A., Laflr F.R., Boyd D., TowlerM.R., Hall M.M., Characterisation of Ga2O3–Na2O–CaO–ZnO–SiO2 Bioactive Glasses, J Mater Sci 2013, 48, 3999–4007.
  • [45] Du J., Kokou L., Rygel J.L., Chen Y., Pantano C.G., Woodman R.,Belcher J., Structure of Cerium Phosphate Glasses: MolecularDynamics Simulation, J Am Ceram Soc 2011, 94, 2393–401.[Crossref]
  • [46] Schaller T., Stebbins J.F., The Structural Role of Lanthanum andYttrium in Aluminosilicate Glasses: A 27Al and 17O MAS NMRStudy, J Phys Chem B 1998, 102, 10690–7.[Crossref]
  • [47] Christie J.K., Tilocca A., Short-Range Structure of YttriumAlumino-Silicate Glass for Cancer Radiotherapy: Car–ParrinelloMolecular Dynamics Simulations, Adv Eng Mater 2010, 12,B326–B30.[Crossref]
  • [48] Peitl FilhoO., Latorre G.P., Hench L.L., Effect of Crystallization onApatite-Layer Formation of Bioactive Glass 45%, J BiomedMaterRes 1996, 30, 509–14.
  • [49] Elbatal H.A., Azooz M.A., Khalil E.M.A., SoltanMonemA., HamdyY.M., Characterization of Some Bioglass–Ceramics,Mater ChemPhy 2003, 80, 599–609.[Crossref]
  • [50] Christie J.K., Ainsworth R.I., De Leeuw N.H., Investigating StructuralFeatures Which Control the Dissolution of Bioactive PhosphateGlasses: Beyond the Network Connectivity, J Non-CrystSolids 2015, In Press.
  • [51] Jones J.R., Review of Bioactive Glass: From Hench to Hybrids,Acta Biomater 2013, 9, 4457–86.[Crossref]
  • [52] Christie J.K., Tilocca A., Aluminosilicate Glasses as YttriumVectors for in Situ Radiotherapy: Understanding Composition-Durability Effects through Molecular Dynamics Simulations,Chem Mater 2010, 22, 3725–34.[Crossref]
  • [53] Christie J.K., Malik J., Tilocca A., Bioactive Glasses as PotentialRadioisotope Vectors for in Situ Cancer Therapy: Investigatingthe Structural Effects of Yttrium, Phys Chem Chem Phys 2011, 13, 17749–55.[Crossref]
  • [54] Cacaina D., Ylanen H., Simon S., Hupa M., The Behaviour of SelectedYttrium Containing Bioactive Glass Microspheres in SimulatedBody Environments, J Mat Sci Mat Med 2008, 19, 1225–33.[Crossref]
  • [55] Calleja F.J.B., Sanditov D.S., Privalko V.P., Review: The Microhardnessof Non-Crystalline Materials, J Mater Sci, 2002, 37,4507–16.[Crossref]
  • [56] Smedskjaer M.M., Topological Model for BoroaluminosilicateGlass Hardness, Frontiers Mat 2014, 1.
  • [57] Smedskjaer M.M., Mauro J.C., Yue Y., Prediction of Glass HardnessUsing Temperature-Dependent Constraint Theory, Phy RevLet 2010, 105, 115503.[Crossref]
  • [58] Magi M., Lippmaa E., Samoson A., Engelhardt G., Grimmer A.R.,Solid-State High-Resolution Silicon-29 Chemical Shifts in Silicates,J Phy Chem 1984, 88, 1518–22.[Crossref]
  • [59] Mathew R., Stevensson B., Tilocca A., Edén M., Toward a RationalDesign of Bioactive Glasses with Optimal Structural Features:Composition–Structure Correlations Unveiled by Solid-State Nmr and Md Simulations, J Phy Chem. B 2014, 118, 833–44.
  • [60] Gavarini S., Guittet M.J., Trocellier P.,Gautier-Soyer M., Carrot F.,Matzen G., CeriumOxidation During Leaching of Ceysialo Glass,J Nucl Mater 2003, 322, 111–8.
  • [61] 4.1 V. NIST X-ray Photoelectron Spectroscopy Database (NationalInstitute of Standards and Technology, Gaithersburg,2012).
  • [62] Serra J.G.P., Liste S., Chiussi S., León B., Pérez-Amor M., YlänenH.O., Hupa M., Influence of the Non-Bridging Oxygen Groups onthe Bioactivity of Silicate Glasses, JMater Sci:Mater Med 2002,13, 1221–5.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_bglass-2015-0016
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.