Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Novel Highly Degradable Chloride Containing
Bioactive Glasses


Title variants

Languages of publication



Addition of CaF2 to a silicate bioactive glass
favours formation of fluorapatite, which is less soluble
in acidic environment than hydroxyapatite. However, excess
CaF2 in the glass is problematic, owing to the formation
of crystalline calcium fluoride rather than fluorapatite
on immersion. In this paper we investigate chloride
as an alternative to fluoride in bioactive silicate glasses
and in particular their bioactivity for the first time. Meltderived
bioactive glasses based on SiO2-P2O5-CaO-CaCl2
with varying CaCl2 contents were synthesised and characterised
by DSC. Chemical analysis of the chloride content
was performed by using an ion selective electrode.
Glass density was determined using Helium Pycnometry.
The glass bioactivity was investigated in Tris buffer. Ion release
measurements were carried out by using ICP-OES.
The chemical analysis results indicated that the majority
of the chloride is retained in the Q2 type silicate glasses
during synthesis. Tg and glass density reduced with increasing
CaCl2 content. Apatite-like phase formation was
confirmed by FITR, XRD and 31P MAS-NMR. The results
of the in vitro studies demonstrated that the chloride containing
bioactive glasses are highly degradable and form
apatite-like phase within three hours in Tris buffer and,
therefore, are certainly suitable for use in remineralising
toothpastes. The dissolution rate of the glass was found
to increase with CaCl2 content. Faster dissolving bioactive
glasses may be attractive for more resorbable bone grafts
and scaffolds.







Physical description


15 - 9 - 2015
20 - 8 - 2015
25 - 4 - 2015


  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University
    of London, Mile End Road, London E1 4NS, United Kingdom
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University
    of London, Mile End Road, London E1 4NS, United Kingdom
  • Otto-Schott-Institut, Friedrich-Schiller-Universität
    Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University
    of London, Mile End Road, London E1 4NS, United Kingdom


  • ---
  • [1] Hench L.L., Day D.E., Holand W., Rheinberger V.M., Glass andMedicine, Int. J. Appl. Glass Sci. 2010, 1, 104–117[Crossref]
  • [2] Hench L.L., The story of Bioglass (R), J. Mater. Sci. Mater. Med.2006, 17, 967–978[Crossref]
  • [3] Jones J.R., Review of bioactive glass: From Hench to hybrids,Acta Biomater. 2013, 9, 4457–4486[Crossref][WoS]
  • [4] Tai B.J., Bian Z., Jiang H., Greenspan D.C., Zhong J., Clark A.E.,et al., Anti-gingivitis effect of a dentifrice containing bioactiveglass (NovaMin (R)) particulate, J. Clin. Periodontol. 2006, 33,86–91[Crossref]
  • [5] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M.,McKay I.J., et al., ’Smart’ acid-degradable zinc-releasing silicateglasses, Mater. Lett. 2014, 126, 278–280[WoS]
  • [6] Fredholm Y.C., Karpukhina N., Law R.V., Hill R.G., Strontiumcontainingbioactive glasses: Glass structure and physical properties,J. Non-Cryst. Solids. 2010, 356, 2546–2551[WoS]
  • [7] Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N.,O’Donnell M.D., Hill R.G., et al., The effects of strontiumsubstitutedbioactive glasses on osteoblasts and osteoclasts invitro, Biomaterials 2010, 31, 3949–3956[Crossref][WoS]
  • [8] Al-Noaman A., Rawlinson S.C.F., Hill R.G., The role of MgO onthermal properties, structure and bioactivity of bioactive glasscoating for dental implants, J. Non-Cryst. Solids. 2012, 358,3019–3027
  • [9] Mneimne M., Hill R.G., Bushby A.J., Brauer D.S., High phosphatecontent significantly increases apatite formation of fluoridecontainingbioactive glasses, Acta Biomater. 2011, 7, 1827–1834[WoS][Crossref]
  • [10] Lusvardi G., Malavasi G., Menabue L., Aina V., Morterra C.,Fluoride-containing bioactive glasses: Surface reactivity in simulatedbody fluids solutions, Acta Biomater. 2009, 5, 3548–3562[WoS][Crossref]
  • [11] Montazeri N., Jahandideh R., Biazar E., Synthesis offluorapatite-hydroxyapatite nanoparticles and toxicity investigations,Int. J. Nanomedicine 2011, 6, 197–201[WoS]
  • [12] Wang C.J., Zhang Y.F., Wei J., Wei S.C., Effects of DifferentpH Conditions on Enamel Erosion Repair by Nano FluorapatitePastes, J. Nanosci. Nanotechnol. 2012, 12, 7346–7353[WoS]
  • [13] Featherstone J.D.B., The science and practice of caries prevention,J. Am. Dent. Assoc. 2000, 131, 887–899
  • [14] Brauer D.S., Mneimne M., Hill R.G., Fluoride-containing bioactiveglasses: Fluoride loss during melting and ion release in trisbuffer solution, J. Non-Cryst. Solids. 2011, 357, 3328–3333[WoS]
  • [15] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., KarpukhinaN., Novel alkali free bioactive fluorapatite glass ceramics, J.Non-Cryst. Solids. 2014, 402, 172–177[WoS]
  • [16] Jabbarifar S.E., Salavati S., Akhavan A., Khosravi K., TavakoliN., Nilchian F., Effect of fluoridated dentifrices on surface microhardnessof the enamel of deciduous teeth, Dent. Res. J. (Isfahan)2011, 8, 113–117
  • [17] Kiprianov A.A., Karpukhina N.G., Oxyhalide silicate glasses,Glass Phys. Chem 2006, 32, 1–27[Crossref]
  • [18] Chen X., Hill R., Karpukhina N., Chlorapatite Glass-Ceramics,Int. J. Appl. Glass Sci. 2014, 5, 207–216[Crossref]
  • [19] Brauer D.S., Al-Noaman A., Hill R.G., Doweidar H., Densitystructurecorrelations in fluoride-containing bioactive glasses,Mater. Chem. Phys. 2011, 130, 121–125[Crossref][WoS]
  • [20] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G.,Fluoride-containing bioactive glasses: Effect of glass designand structure on degradation, pH and apatite formation in simulatedbody fluid, Acta Biomater. 2010, 6, 3275–3282[Crossref]
  • [21] Hill R.G., Law R.V., O’Donnell M.D., Hawes J., Bubb N.L., WoodD.J., et al., Characterisation of fluorine containing glasses andglass-ceramics by 19F magic angle spinning nuclear magneticresonance spectroscopy, J. Eur. Ceram. Soc. 2009, 29, 2185–2191[WoS][Crossref]
  • [22] Sandland T.O., Du L.S., Stebbins F., Webster J.D., Structure ofCl-containing silicate and aluminosilicate glasses: A Cl-35 MASNMRstudy, Geochim. Cosmochim. Acta 2004, 68, 5059–5069[Crossref]
  • [23] Hill R.G., Brauer D.S., Predicting the glass transition temperatureof bioactive glasses from their molecular chemical composition,Acta Biomater. 2011, 7, 3601–3605[Crossref]
  • [24] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., KarpukhinaN., Novel alkali free bioactive fluorapatite glass ceramics, J. Nocryst.Solids 2014, 402, 172–177[WoS]
  • [25] Farooq I., Tylkowski M., Muller S., Janicki T., Brauer D.S., HillR.G., Influence of sodiumcontent on the properties of bioactiveglasses for use in air abrasion, Biomed. Mater. 2013, 8,[Crossref]
  • [26] Smedskjaer M.M., Jensen M., Yue Y., Effect of thermal historyand chemical composition on hardness of silicate glasses, J.Non-Cryst. Solids. 2010, 356, 893–897[WoS]
  • [27] Ananthakrishna S., Raghu T., Koshy S., Kumar N. Clinical evaluationof the eflcacy of bioactive glass and strontium chloride fortreatment of dentinal hypersensitivity, J. Interdiscip Dentistry.2012, 2, 92–97
  • [28] Hench L.L., Bioceramics, J. Am. Ceram. Soc. 1998, 81, 1705–1728[Crossref]
  • [29] Hench L.L., Bioceramics - from concept to clinic, J. Am. Ceram.Soc. 1991, 74, 1487–1510[Crossref]
  • [30] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., KarpukhinaN., Bioactivity of Sodium Free Fluoride Containing Glasses andGlass-Ceramics, Materials 2014, 7, 5470–5487[Crossref]
  • [31] Elliott J.C., Young R.A., Conversion of Single Crystals of Chlorapatiteinto Single Crystals of Hydroxyapatite, Nature 1967, 214,904–906

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.