Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Influence of zinc and magnesium substitution on
ion release from Bioglass 45S5 at physiological
and acidic pH

Content

Title variants

Languages of publication

EN

Abstracts

EN
Ion release of Mg- and Zn-substituted Bioglass
45S5 (46.1 SiO2-2.6 P2O5-26.9 CaO-24.3Na2O; mol%; with 0,
25, 50, 75 or 100% of calcium replaced bymagnesium/zinc)
was investigated at pH 7.4 (Tris buffer) and pH 4 (acetic
acid/sodium acetate buffer) in static and dynamic dissolution
experiments. Despite Mg2+ and Zn2+ having the same
charge and comparable ionic radii, they influenced the
dissolution behaviour in very different ways. In Tris, Mgsubstituted
glasses showed similar ion release as 45S5,
while Zn-substituted glasses showed negligible ion release.
At low pH, however, release behaviour was similar,
with all glasses releasing large percentages of ions within
a few minutes. Precipitation of crystalline phases also varied,
as Mg- and Zn-substitution inhibited apatite formation,
and Zn-substitution resulted in formation of zinc
phosphate phases at low pH. These results are relevant
for glasses used in aluminium-free glass ionomer bone cements,
as they show that Zn/Mg-substituted glasses release
ions similarly fast as glasses containing no Zn/Mg,
suggesting that these ions are no prerequisite for ionomer
glasses. Zn-substituted glasses may potentially be used as
controlled-release materials, which release antibacterial
zinc ions when needed only, i.e. at low pH conditions (e.g.
bacterial infection), but not at normal physiological pH
conditions.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

accepted
14 - 8 - 2015
online
14 - 9 - 2015
received
4 - 5 - 2015

Contributors

  • Otto Schott Institute of Materials Research,
    Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena,
    Germany
author
  • Johan Gadolin Process Chemistry Centre, Åbo
    Akademi University, Piispankatu 8, 20500 Turku, Finland
  • Otto Schott Institute of Materials Research,
    Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena,
    Germany

References

  • ---
  • [1] Wilson A.D., Prosser H.J., Powis D.M., Mechanism of adhesionof poly-electrolyte cements to hydroxyapatite, J Dent Res 1983,62, 590–592.[Crossref]
  • [2] De Barra E., Grifln S., Henn G., Hill R., Devlin J., Johal K. etal., The mechanism of fluoride release from glass (ionomer)polyalkenoate cements, J Dent Res 1995, 74, 833–833.
  • [3] Brauer D.S., Karpukhina N., Kedia G., Bhat A., LawR.V., RadeckaI. et al., Bactericidal strontium-releasing injectable bone cementsbased on bioactive glasses, J Roy Soc Interface 2013, 10,20120647.[Crossref]
  • [4] Blades M.C., Moore D.P., Revell P.A., Hill R., in vivo skeletalresponse and biomechanical assessment of two novelpolyalkenoate cements following femoral implantation in the femaleNew Zealand White rabbit, J Mater Sci-Mater M 1998, 9,701–706.[Crossref]
  • [5] Boyd D., Clarkin O.M.,Wren A.W., Towler M.R., Zinc-based glasspolyalkenoate cements with improved setting times and mechanicalproperties, Acta Biomater 2008, 4, 425–431.[Crossref]
  • [6] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G.,Benefits and drawbacks of zinc in glass ionomer bone cements,Biomed Mater 2011, 6, 045007.[Crossref]
  • [7] Shannon R.D., Revised effective ionic radii and systematic studiesof interatomic distances in halides and chalcogenides, ActaCryst 1976, A32, 751–767.[Crossref]
  • [8] Balasubramanian P., Strobel L.A., Kneser U., Boccaccini A.R.,Zinc-containing bioactive glasses for bone regeneration, dentaland orthopedic applications, Biomedical Glasses 2015, 1, 51–69.
  • [9] Diba M., Tapia F., Boccaccini A.R., Strobel L.A., Magnesiumcontainingbioactive glasses for biomedical applications, Int J Appl Glass Sci 2012, 3, 221–253.[Crossref]
  • [10] Underwood E.J., Trace elements in human and animal nutrition.Academic Press, New York, 1971 1971.
  • [11] Hsieh H.S., Navia J.M., Zinc-deficiency and bone-formation inguinea-pig alveolar implants, Journal of Nutrition 1980, 110,1581–1588.
  • [12] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency onserum somatomedin levels and skeletal growth in young rats,Endocrinology 1984, 114, 1860–1863.
  • [13] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E.,Agren M.S., Zinc in wound healing: Theoretical, experimental,and clinical aspects, Wound Repair Regen 2007, 15, 2–16.[Crossref]
  • [14] Prasad A.S., Clinical manifestations of zinc-deficiency, AnnuRev Nutr 1985, 5, 341–365.[Crossref]
  • [15] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc onbone formation in tissue culture, Biochem Pharmacol 1987, 36,4007–4012.[Crossref]
  • [16] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolismin rats - Increases in alkaline phosphatase activity and DNA content,Biochem Pharmacol 1986, 35, 773–777.[Crossref]
  • [17] Holloway W.R., Collier F.M., Herbst R.E., Hodge J.M., NicholsonG.C., Osteoblast-mediated effects of zinc on isolated rat osteoclasts:Inhibition of bone resorption and enhancement of osteoclastnumber, Bone 1996, 19, 137–142.[Crossref]
  • [18] Elliott J.C., Structure and chemistry of the apatites and other calciumorthophosphates, 1st ed. Elsevier, Amsterdam, New York,London, Tokyo, 1994 1994.
  • [19] Aaseth J., Boivin G., Andersen O., Osteoporosis and trace elements– An overview, J Trace Elem Med Bio 2012, 26, 149–152.[Crossref]
  • [20] FawcettW.J., Haxby E.J.,Male D.A.,Magnesium: physiology andpharmacology, Brit J Anaesth 1999, 83, 302–320.
  • [21] Cannillo V., Pierli F., Ronchetti I., Siligardi C., Zaffe D., Chemicaldurability and microstructural analysis of glasses soaked inwater and in biological fluids, Ceram Int 2009, 35, 2853–2869.[Crossref]
  • [22] Punnia-Moorthy A., Evaluation of pH changes in inflammationof the subcutaneous air pouch lining in the rat, induced bycarrageenan, dextran and staphylococcus aureus, J Oral PatholMed 1987, 16, 36-44.[Crossref]
  • [23] Bingel L., Groh D., Karpukhina N., Brauer D.S., Influence of dissolutionmedium pH on ion release and apatite formation ofBioglassr 45S5, Mater Lett 2015, 143, 279–282.
  • [24] Shah F.A., Brauer D.S., Desai N., Hill R.G., Hing K.A., Fluoridecontainingbioactive glasses and Bioglassr 45S5 form apatitein low pH cell culture medium, Mater Lett 2014, 119, 96–99.
  • [25] Jones J.R., Review of bioactive glass: From Hench to hybrids,Acta Biomater 2013, 9, 4457–4486.[Crossref]
  • [26] Brauer D.S., Bioactive glasses-structure and properties,Angew Chem Int Edit 2015, 54, 4160-4181 and Angew Chem GerEd 2015, 127, 4232–4254.[Crossref]
  • [27] Miller C., Hatton P.V., Mirvakily F., inventors; The University ofShefleld, assignee. A novel glass-ionomer cement. UK patentWO 2014/102538 A1. 3 July 2014.
  • [28] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses usingthe network connectivity or split network models, J Non-CrystSolids 2011, 357, 3884–3887.
  • [29] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatibleglasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer, Acta Biomater 2013, 9, 5400–5410.
  • [30] Fagerlund S., Ek P., Hupa M., Hupa L., On determining chemicaldurability of glasses, Glass Technol 2010, 51, 235–240.
  • [31] Fagerlund S., Ek P., Hupa L., Hupa M., Dissolution kinetics of abioactive glass by continuous measurement, J Am Ceram Soc2012, 95, 3130–3137.
  • [32] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behaviorof bioactive glass dissolution, J Biomed Mater Res 2001, 58,720–726.
  • [33] Aina V., Bertinetti L., Cerrato G., Cerruti M., Lusvardi G.,Malavasi G. et al., On the dissolution/reaction of small-grainBioglass 45S5 and F-modified bioactive glasses in artificialsaliva (AS), Applied Surface Science 2011, 257, 4185–4195.
  • [34] Wilson A.D., A hard decade’s work: Steps in the invention of theglass-ionomer cement, J Dent Res 1996, 75, 1723–1727.[Crossref]
  • [35] Dietzel A., Structural chemistry of glass, Naturwissenschaften1941, 29, 537–547.[Crossref]
  • [36] Neuville D.R., Cormier L.,Massiot D., Al coordination and speciationin calciumaluminosilicate glasses: Effects of compositiondetermined by Al-27 MQ-MAS NMR and Raman spectroscopy,Chem Geol 2006, 229, 173–185.
  • [37] Grifln S.G., Hill R.G., Influence of glass composition on theproperties of glass polyalkenoate cements. Part I: Influence ofaluminium to silicon ratio, Biomaterials 1999, 20, 1579–1586.[Crossref]
  • [38] Watts S.J., O’Donnell M.D., Law R.V., Hill R.G., Influence of magnesiaon the structure and properties of bioactive glasses, JNon-Cryst Solids 2010, 356, 517–524.
  • [39] Pedone A., Malavasi G., Menziani M.C., Computational insightinto the effect of CaO/MgO substitution on the structural propertiesof phospho-silicate bioactive glasses, J Phys Chem C2009, 113, 15723–15730.
  • [40] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Segre U.,Carnasciali M.M. et al., A combined experimental and computationalapproach to (Na2O)1−x·CaO·(ZnO)x·2SiO2 glasses characterization,J Non-Cryst Solids 2004, 345, 710–714.
  • [41] Linati L., Lusvardi G., Malavasi G., Menabue L., Menziani M.C.,Mustarelli P. et al., Qualitative and quantitative structurepropertyrelationship analysis ofmulticomponent potential bioglasses,J Phys Chem B 2005, 109, 4989–4998.
  • [42] Aina V., Malavasi G., Pla A.F., Munaron L., Morterra C., Zinccontainingbioactive glasses: Surface reactivity and behaviourtowards endothelial cells, Acta Biomater 2009, 5, 1211–1222.[Crossref]
  • [43] Tilocca A., Cormack A.N., Modeling the water-bioglass interfaceby ab initio molecular dynamics simulations, ACS Appl MaterInter 2009, 1, 1324–1333.
  • [44] Tilocca A., Cormack A.N., The initial stages of bioglass dissolution:a Car-Parrinello molecular-dynamics study of the glasswaterinterface, P Roy Soc A-Math Phy 2011, 467, 2102–2111.
  • [45] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M.,McKay I.J. et al., ‘Smart’ acid-degradable zinc-releasing silicateglasses, Mater Lett 2014, 126, 278–280.
  • [46] Shah F.A., Brauer D.S., Wilson R.M., Hill R.G., Hing K.A., Influenceof cell culture medium composition on in vitro dissolutionbehavior of a fluoride-containing bioactive glass, J BiomedMater Res A 2014, 102, 647–654.
  • [47] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G.,Fluoride-containing bioactive glasses: Effect of glass designand structure on degradation, pH and apatite formation in simulatedbody fluid, Acta Biomater 2010, 6, 3275–3282.[Crossref]
  • [48] Mayer I., Schlam R., Featherstone J.D.B., Magnesiumcontainingcarbonate apatites, J Inorg Biochem 1997, 66,1–6.
  • [49] Mayer I., Apfelbaum F., Featherstone J.D.B., Zinc ions in syntheticcarbonated hydroxyapatites, Arch Oral Biol 1994, 39, 87–90.[Crossref]
  • [50] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitoryeffect of magnesium and zinc on crystallization kinetics of hydroxyapatite(0001) face, J Phys Chem B 2000, 104, 4189–4194.
  • [51] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L.,Morterra C. et al., Cytotoxicity of zinc-containing bioactiveglasses in contact with human osteoblasts, Chem-Biol Interact2007, 167, 207–218.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_bglass-2015-0009
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.