Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1 |

Article title

Zinc-containing bioactive glasses for bone
regeneration, dental and orthopedic applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
Zinc is a vital and beneficial trace element found
in the human body. Though found in small proportions,
zinc performs a variety of functions in relation to the immune
system, cell division, fertility and the body growth
and maintenance. In particular, zinc is proven to be a
necessary element for the formation, mineralization, development
and maintenance of healthy bones. Considering
this attractive attributes of zinc, recent research has
widely focused on using zinc along with silicate-based
bioactive glasses for bone tissue engineering applications.
This paper reviews relevant literature discussing the significance
of zinc in the human body, along with its ability
to enhance antibacterial effects, bioactivity and distinct
physical, structural and mechanical properties of bioactive
glasses. In this context, even if the present analysis is
not meant to be exhaustive and only representative studies
are discussed, literature results confirm that it is essential
to understand the properties of zinc-containing bioactive
glasses with respect to their in vitro biological behavior,
possible cytotoxic effects and degradation characteristics
to be able to effectively apply these glasses in bone regeneration
strategies. Topics attracting increasing research efforts
in this field are elaborated in detail in this review,
including a summary of the structural, physical, biological
and mechanical properties of zinc-containing bioactive
glasses. This paper also presents an overview of the
various applications in which zinc-containing bioactive
glasses are considered for use as bone tissue scaffolds,
bone filling granules, bioactive coatings and bone cements,
and advances and remaining challenges are highlighted.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

received
1 - 3 - 2015
accepted
25 - 5 - 2015
online
29 - 7 - 2015

Contributors

  • Institute of Biomaterials, University
    of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Department of Hand, Plastic and Reconstructive
    Surgery - Burn Center, University of Heidelberg, Ludwigshafen,
    Germany
author
  • Department of Hand, Plastic and Reconstructive
    Surgery - Burn Center, University of Heidelberg, Ludwigshafen,
    Germany
  • Institute of Biomaterials, University
    of Erlangen-Nuremberg, 91058 Erlangen, Germany

References

  • [1] Salgado A.J., Coutinho O.P., Reis RL., Bone tissue engineering:State of the art and future trends, Macromol. Biosci. 2004, 4,743–765[Crossref]
  • [2] Shrivats A.R., McDermott M.C., Hollinger J.O., Bone tissue engineering:state of the union, Drug Discov. Today 2014, 19,781–786[Crossref]
  • [3] Gomes S., Leonor I.B., Mano J.F., Reis R.L., Kaplan D.L., Naturaland genetically engineered proteins for tissue engineering,Prog. Polym. Sci. 2012, 37, 1–17 [Crossref]
  • [4] Hench L.L., The story of Bioglass, J. Mater. Sci. Mater. Med.2006, 17, 967–978[Crossref]
  • [5] Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K., Bondingmechanisms at the interface of ceramic prosthetic materials,J. Biomed. Mater. Res. 1971, 5, 117–141[Crossref]
  • [6] Hench L.L., Polak J.M., Third-generation biomedicalmaterials.Science 2002, 295, 1014–1017[Crossref]
  • [7] Hench L.L., Xynos I.D., Polak J.M., Bioactive glasses for insitu tissue regeneration, J. Biomater. Sci. Polym. Ed. 2004, 15,543–562[Crossref]
  • [8] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of bioactiveglasses on angiogenesis: a review of in vitro and in vivoevidences, Tissue Eng. Part B Rev. 2010, 16, 199–207[Crossref]
  • [9] Jones J.R., Review of bioactive glass: From Hench to hybrids,Acta. Biomater. 2013, 9, 4457–4486[Crossref]
  • [10] Gomez-Vega J., Saiz E., Tomsia A., Marshall G., Marshall S.,Bioactive glass coatings with hydroxyapatite and Bioglassrparticles on Ti-based implants. 1. Processing, Biomaterials2000, 21, 105–111
  • [11] Gerhardt L.C., Widdows K.L., Erol M.M., Burch C.W., Sanz-Herrera J.A., Ochoa I., et al., The pro-angiogenic properties ofmulti-functional bioactive glass composite scaffolds, Biomaterials2011, 32, 4096–4108[Crossref]
  • [12] Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B.,Bonewald L.F., et al., Bioactive glass in tissue engineering,Acta Biomater. 2011, 7, 2355–2373[Crossref]
  • [13] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradableand bioactive porous polymer/inorganic composite scaffoldsfor bone tissue engineering, Biomaterials 2006, 27,3413–3431[Crossref]
  • [14] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biologicalresponse to ionic dissolution products from bioactiveglasses and glass-ceramics, Biomaterials 2011, 32, 2757–2774[Crossref]
  • [15] Brown K.H.,Wuehler S.E., Peerson J.M., The importance of zincin human nutrition and estimation of the global prevalence ofzinc deficiency, Food Nutr. Bull. 2001, 22, 113–125[Crossref]
  • [16] Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., StefanidouM.E., Zinc and human health: an update, Arch. Toxicol. 2012,86, 521–534[Crossref]
  • [17] Yamaguchi M., Role of nutritional zinc in the prevention of osteoporosis,Mol. Cell. Biochem. 2010, 338, 241–254[Crossref]
  • [18] Aydin S.B., Hanley L., Antibacterial activity of dental compositescontaining zinc oxide nanoparticles, J. Biomed. Mater.Res. Part B Appl. Biomater. 2010, 94, 22–31
  • [19] Yamaguchi M., Yamaguchi R., Action of zinc on bonemetabolism in rats: Increases in alkaline phosphataseactivity and DNA content. Biochem Pharmacol 1986, 35,773–777[Crossref]
  • [20] Ito A., Kawamura H., Otsuka M., Ikeuchi M., Ohgushi H.,Ishikawa K., et al., Zinc-releasing calcium phosphate for stimulatingbone formation, Mater. Sci. Eng. C 2002, 22, 21–25[Crossref]
  • [21] Stefanidou M., Maravelias C., Dona A., Spiliopoulou C., Zinc:a multipurpose trace element, Arch. Toxicol. 2006, 80, 1–9[Crossref]
  • [22] Vallee B.L., Falchuk K.H., The biochemical basis of zinc physiology.Physiol. Rev. 1993, 73, 79–118
  • [23] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E.,Agren M.S., Zinc in wound healing: Theoretical, experimental,and clinical aspects, Wound Repair Regen. 2007, 15, 2-16[Crossref]
  • [24] Haumont S., Distribution of zinc in bone tissue, J. Histochem.Cytochem. 1961, 9, 141-145[Crossref]
  • [25] Murray E.J., Messer H.H., Turnover of bone zinc during normaland accelerated bone loss in rats, J. Nutr. 1981, 111, 1641–1647
  • [26] Hsieh H.S., Navia J.M., Zinc deficiency and bone formation inguinea pig alveolar implants, J. Nutr. 1980, 110, 1581–1588
  • [27] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency onserum somatomedin levels and skeletal growth in young rats,Endocrinology 1984, 114, 1860–1863[Crossref]
  • [28] Aitken J.M., Factors affecting the distribution of zinc in the humanskeleton, Calcif. Tissue Res. 1976, 20, 23–30[Crossref]
  • [29] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc onbone formation in tissue culture, Biochem. Pharmacol. 1987,36, 4007–4012[Crossref]
  • [30] Yamaguchi M., Role of Zinc in Bone Formation and Bone Resorption,1998, 135, 119–135
  • [31] Zhang X.F., Kehoe S., Adhi S.K., Ajithkumar T.G., Moane S.,O’Shea H., et al., Composition–structure–property (Zn2+ andCa2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: Potentialcomponents for nerve guidance conduits, Mater. Sci.Eng. C 2011, 31, 669–676[Crossref]
  • [32] Sabbatini M., Boccafoschi F., Bosetti M., Cannas M., Adhesionand differentiation of neuronal cells on Zn-doped bioactiveglasses, J. Biomater. Appl. 2014, 28, 708–718[Crossref]
  • [33] Hasan M.S., Kehoe S., Boyd D., Temporal analysis of dissolutionby-products and genotoxic potential of spherical zincsilicatebioglass: “imageable beads” for transarterial embolization,J. Biomater. Appl. 2014, 29, 566–581[Crossref]
  • [34] El-Kady A.M., Ali A.F., Fabrication and characterization of ZnOmodified bioactive glass nanoparticles, Ceram. Int. 2012, 38,1195–1204
  • [35] Anand V., Singh K.J., Kaur K., Evaluation of zinc and magnesiumdoped 45S5 mesoporous bioactive glass system for thegrowth of hydroxyl apatite layer, J. Non Cryst. Solids 2014,406, 88–94[Crossref]
  • [36] Kaur G., Pickrell G., Kimsawatde G., Homa D., Allbee H.A., SriranganathanN., Synthesis, cytotoxicity, and hydroxyapatiteformation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses, Sci. Rep. 2014, 4, 4392
  • [37] Aina V., Malavasi G., Fiorio P.A., Munaron L., Morterra C., Zinccontainingbioactive glasses: surface reactivity and behaviourtowards endothelial cells, Acta Biomater. 2009, 5, 1211–1222[Crossref]
  • [38] Srivastava A.K., Pyare R., Characterization of ZnO substituted45S5 Bioactive Glasses and Glass - Ceramics, J. Mater. Sci.Res. 2012, 1, 207–220
  • [39] Haimi S., Gorianc G., Moimas L., Lindroos B., Huhtala H., RätyS., et al., Characterization of zinc-releasing three-dimensionalbioactive glass scaffolds and their effect on human adiposestem cell proliferation and osteogenic differentiation, ActaBiomater 2009, 5, 3122–3131[Crossref]
  • [40] Goh Y.F., Alshemary A.Z., Akram M., Abdul Kadir M.R., HussainR., In vitro study of nano-sized zinc doped bioactive glass,Mater. Chem. Phys. 2013, 137, 1031–1038[Crossref]
  • [41] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., PedoneA., Segre U., et al., Properties of zinc releasing surfaces forclinical applications. J. Biomater. Appl. 2008, 22, 505–526
  • [42] Lusvardi G., Zaffe D., Menabue L., Bertoldi C., Malavasi G.,Consolo U., In vitro and in vivo behaviour of zinc-doped phosphosilicateglasses, Acta Biomater. 2009, 5, 419–428[Crossref]
  • [43] Cassingham N.J., Stennett M.C., Bingham P.A., Hyatt N.C.,Aquilanti G., The Structural Role of Zn in Nuclear WasteGlasses, Int. J. Appl. Glas. Sci. 2011, 2, 343–353[Crossref]
  • [44] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K.,et al., Role of glass structure in defining the chemical dissolutionbehavior, bioactivity and antioxidant properties of zincand strontium co-doped alkali-free phosphosilicate glasses,Acta Biomater. 2014, 10, 3264–3278[Crossref]
  • [45] Kapoor S., Goel A., Correia A.F., Pascual M.J., Lee H., KimH., Ferreira J.M.F., Influence of ZnO/MgO substitution on sintering,crystallization, and bio-activity of alkali-free glassceramics,Mater. Sci. Eng. C 2015, In Press
  • [46] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M.,McKay I.J., et al., “Smart” acid-degradable zinc-releasing silicateglasses, Mater. Lett. 2014, 126, 278–280[Crossref]
  • [47] Kamitakahara M., Ohtsuki C., Inada H., Tanihara M., MiyazakiT., Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2glass-ceramics containing apatite and wollastonite, Acta Biomater.2006, 2, 467–471[Crossref]
  • [48] Salinas A.J., Shruti S., Malavasi G., Menabue L., Vallet-RegíM., Substitutions of cerium, galliumand zinc in ordered mesoporousbioactive glasses., Acta Biomater. 2011, 7, 3452–3458[Crossref]
  • [49] Balamurugan A., Balossier G., Kannan S., Michel J., RebeloA.H.S., Ferreira J.M.F., Development and in vitro characterizationof sol-gel derived CaO-P2O5-SiO2-ZnO bioglass, Acta Biomater.2007, 3, 255–262[Crossref]
  • [50] Oki A., Parveen B., Hossain S., Adeniji S., Donahue H., Preparationand in vitro bioactivity of zinc containing sol-gel-derivedbioglass materials, J. Biomed. Mater. Res. A, 2004, 69, 216–221[Crossref]
  • [51] Bini M., Grandi S., Capsoni D., Mustarelli P., Saino E., Visai L.,SiO2-P2O5-CaO Glasses and Glass-Ceramics with and withoutZnO: Relationships among Composition, Microstructure, andBioactivity, J. Phys. Chem. C 2009, 113, 8821–8828[Crossref]
  • [52] Saino E., Grandi S., Quartarone E., Maliardi V., Galli D., BloiseN, et al., In vitro calcified matrix deposition by human osteoblastsonto a zinc-containing bioactive glass, Eur. Cell.Mater. 2011, 21, 59–72
  • [53] Singh R.K., Srinivasan A., Bioactivity of SiO2–CaO–P2O5–Na2O glasses containing zinc–iron oxide, Appl. Surf. Sci.2010, 256, 1725–1730[Crossref]
  • [54] Erol M., Özyuguran A., Çelebican Ö., Synthesis, Characterization,and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn-Mg Co-Doped Bioactive Glasses, Chem. Eng. Technol. 2010,33, 1066–1074[Crossref]
  • [55] Du R.L., Chang J., Ni S.Y., ZhaiW.Y.,Wang J.Y., Characterizationand in vitro bioactivity of zinc-containing bioactive glass andglass-ceramics, J. Biomater. Appl. 2006, 20, 341–360[Crossref]
  • [56] Du R.L., Chang J., The influence of Zn on the deposition of HAon sol-gel derived bioactive glass, Biomed. Mater. Eng. 2006,16, 229–236
  • [57] Veres R., Vulpoi A., Magyari K., Ciuce C., Simon V., Synthesis,characterisation and in vitro testing of macroporous zinc containingscaffolds obtained by sol–gel and sacrificial templatemethods, J. Non Cryst. Solids, 2013, 373-374, 57–64
  • [58] Wang X., Li X., Ito A., Sogo Y., Synthesis and characterizationof hierarchicallymacroporous and mesoporous CaO-MO-SiO2-P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater.2011, 7, 3638–3644[Crossref]
  • [59] Looney M., O’Shea H., Boyd D., Preliminary evaluation of therapeuticion release from Sr-doped zinc-silicate glass ceramics,J. Biomater. Appl. 2013, 27, 511–524[Crossref]
  • [60] Soundrapandian C.,Mahato A., Kundu B., Datta S., Sa B., BasuD., Development and effect of different bioactive silicate glassscaffolds: In vitro evaluation for use as a bone drug deliverysystem, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12[Crossref]
  • [61] Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Menabue L.,Vallet-Regi M., Mesoporous bioactive scaffolds prepared withcerium-, gallium- and zinc-containing glasses, Acta Biomater.2013, 9, 4836–4844[Crossref]
  • [62] Shruti S., Salinas A.J., In vitro antibacterial capacity and cytocompatibility,J. Mater. Chem. B 2014, 2, 4836–4847
  • [63] Oh S.A., Kim S.H., Won J.E., Kim J.J., Shin U.S., Kim H.W., Effectson growth and osteogenic differentiation of mesenchymalstem cells by the zinc-added sol-gel bioactive glass granules,J. Tissue Eng. 2011, 2010, 475260-475270
  • [64] Boyd D., Carroll G., Towler M.R., Freeman C., Farthing P., BrookI.M., Preliminary investigation of novel bone graft substitutesbased on strontium-calcium-zinc-silicate glasses, J. Mater.Sci. Mater. Med. 2009, 20, 413–420[Crossref]
  • [65] Murphy S., Boyd D., Moane S., Bennett M., The effect of compositionon ion release from Ca-Sr-Na-Zn-Si glass bone grafts,J. Mater. Sci. Mater. Med. 2009, 20, 2207–2214[Crossref]
  • [66] Xie D., Feng D., Chung I.D., Eberhardt A.W., A hybrid zinc–calcium–silicate polyalkenoate bone cement, Biomaterials2003, 24, 2749–2757[Crossref]
  • [67] Boyd D., Clarkin O.M., Wren A.W., Towler M.R., Zinc-basedglass polyalkenoate cements with improved setting times andmechanical properties, Acta Biomater. 2008, 4, 425–431[Crossref]
  • [68] Boyd D., Li H., Tanner D.A., Towler M.R., Wall J.G., The antibacterialeffects of zinc ion migration from zinc-based glasspolyalkenoate cements, J. Mater. Sci. Mater. Med. 2006, 17,489–494[Crossref]
  • [69] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G.,Benefits and drawbacks of zinc in glass ionomer bone cements,Biomed. Mater. 2011, 6, 045007[Crossref]
  • [70] Zhang J., Park Y.D., Bae W.J., El-Fiqi A., Shin S.H., Lee E.J., etal., Effects of bioactive cements incorporating zinc-bioglassnanoparticles on odontogenic and angiogenic potential of humandental pulp cells, J. Biomater. Appl. 2015, 29, 954–64[Crossref]
  • [71] Boyd D., Towler M.R., Law R.V., Hill R.G., An investigation intothe structure and reactivity of calcium-zinc-silicate ionomerglasses using MAS-NMR spectroscopy, J. Mater. Sci. Mater.Med. 2006, 17, 397-402[Crossref]
  • [72] Zhang X., Werner-Zwanziger U., Boyd D., Compositionstructure-property relationships for non-classical ionomercements formulated with zinc-boron germanium-basedglasses, J. Biomater. Appl. 2015, 29, 1203-17[Crossref]
  • [73] Lynch E., Brauer D.S., Karpukhina N., Gillam D.G., Hill R.G.,Multi-component bioactive glasses of varying fluoride contentfor treating dentin hypersensitivity, Dent.Mater. 2012, 28,168-178[Crossref]
  • [74] Esteban-Tejeda L., Díaz L.A., Prado C., Cabal B., Torrecillas R.,Moya J.S., Calciumand zinc containing bactericidal glass coatingsfor biomedical metallic substrates, Int. J. Mol. Sci. 2014,15, 13030–13044[Crossref]
  • [75] Lotfibhakshaiesh N., Brauer D.S., Hill R.G., Bioactive glass engineeredcoatings for Ti6Al4V alloys: Influence of strontiumsubstitution for calcium on sintering behaviour, J. Non-Cryst.Solids 2010, 356, 2583-90[Crossref]
  • [76] Dietzel A., Die Kationenfeldskärten und ihre Beziehungenzu Entglasungsvorgängen, zur Verbindungsbildung und zu denSchmelzpunkten von Silicaten, Z. Electrochem. Angew. P.1942, 48, 9-23.
  • [77] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Synthesis,characteriaztation and molecular dynamics simulationof Na2O-CaO-SiO2-ZnO glasses, J. Phys. Chem. B 2002, 106,9753-60.[Crossref]
  • [78] Wallace K., Design of novel bioactive glass compositions, PhDthesis, University of Limerick, Limerick, Ireland, 2000
  • [79] McMillan P., Glass-Ceramics., London, Academic Press, 1964
  • [80] Grand M. Le., Ramos A.Y., Calas G., Galoisy L., Ghaleb D.,Pacaud F., Zinc environment in aluminoborosilicate glassesby Zn K-edge extended x-ray absorption fine structure spectroscopy,J. Mater. Res. 2011, 15, 2015–2019
  • [81] Verné E., Bretcanu O., Balagna C., Bianchi C.L., Cannas M.,Gatti S., et al., Early stage reactivity and in vitro behavior ofsilica-based bioactive glasses and glass-ceramics, J. Mater.Sci. Mater. Med. 2009, 20, 75–87[Crossref]
  • [82] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L.,Morterra C., et al., Cytotoxicity of zinc-containing bioactiveglasses in contact with human osteoblasts, Chem. Biol. Interact.2007, 167, 207–218
  • [83] Lao J., Nedelec J., Jallot E., Controlled Bioactivity in Zinc-DopedSol - Gel-Derived Binary Bioactive Glasses, J. Phys. Chem.2008, 112, 13663–13667
  • [84] Kokubo T., Takadama H., Howuseful is SBF in predicting in vivobone bioactivity?, Biomaterials 2006, 27, 2907–2915[Crossref]
  • [85] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., InhibitoryEffect ofMagnesiumand Zinc on Crystallization Kineticsof Hydroxyapatite (0001) Face, J. Phys. Chem. B 2000, 104,4189–4194
  • [86] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses usingthe network connectivity or split network models, J. NonCryst. Solids 2011, 357, 3884–3887[Crossref]
  • [87] Leek J.C., Keen C.L., Vogler J.B., Golub M.S., Hurley L.S., HendrickxA.G., et al., Long-term marginal zinc deprivation in rhesusmonkeys. IV. Effects on skeletal growth and mineralizatio,Am. J. Clin. Nutr. 1988, 47, 889–895
  • [88] Nagata M., Kayanoma M., Takahashi T., Kaneko T., Hara H.,Marginal zinc deficiency in pregnant rats impairs bone matrixformation and bone mineralization in their neonates, Biol.Trace. Elem. Res. 2011, 142, 190–199[Crossref]
  • [89] Hadley K.B., Newman S.M., Hunt J.R., Dietary zinc reducesosteoclast resorption activities and increases markers of osteoblastdifferentiation,matrixmaturation, and mineralizationin the long bones of growing rats, J. Nutr. Biochem. 2010, 21,297–303[Crossref]
  • [90] Dimai H.P., Hall S.L., Stilt-Coflng B., Farley J.R., Skeletal responseto dietary zinc in adult female mice, Calcif. Tissue Int.1998, 62, 309–315[Crossref]
  • [91] Jones L., Thomsen J.S., Barlach J., Mosekilde L., Melsen B., Noinfluence of alimentary zinc on the healing of calvarial defectsfilled with osteopromotive substances in rats, Eur. J. Orthod.2010, 32, 124–130[Crossref]
  • [92] Hyun T.H., Barrett-Connor E., Milne D.B., Zinc intakes andplasma concentrations in men with osteoporosis: the RanchoBernardo Study, Am. J. Clin. Nutr. 2004, 80, 715–721
  • [93] Bouglé D.L., Sabatier J.P., Guaydier-Souquières G., Guillon-Metz F., Laroche D., Jauzac P., et al., Zinc status and bone mineralisationin adolescent girls, J. Trace Elem. Med. Biol. 2004,18, 17–21[Crossref]
  • [94] Nagata M., Lönnerdal B., Role of zinc in cellular zinc traflckingand mineralization in a murine osteoblast-like cell line, J. Nutr.Biochem. 2011, 22, 172–178[Crossref]
  • [95] Liang D., Yang M., Guo B., Cao J., Yang L., Guo X., Zinc upregulatesthe expression of osteoprotegerin in mouse osteoblastsMC3T3-E1 through PKC/MAPK pathways, Biol. Trace Elem. Res.2012, 146, 340–348[Crossref]
  • [96] Yamaguchi M., Weitzmann M.N., Zinc stimulates osteoblastogenesisand suppresses osteoclastogenesis by antagonizingNF-kB activation, Mol. Cell. Biochem. 2011, 355, 179–186[Crossref]
  • [97] Lam J., Takeshita S., Barker J.E., Kanagawa O., Ross F.P., TeitelbaumS.L., TNF-alpha induces osteoclastogenesis by directstimulation of macrophages exposed to permissive levels ofRANK ligand, J. Clin. Invest. 2000, 106, 1481–1488[Crossref]
  • [98] Kwun I.S., Cho Y.E., Lomeda R.A.R., Shin H.I., Choi J.Y., KangY.H., et al., Zinc deficiency suppresses matrix mineralizationand retards osteogenesis transiently with catch-up possiblythrough Runx 2 modulation, Bone, 2010, 46, 732–741[Crossref]
  • [99] Nikolic-Hughes I., O’Brien P.J., Herschlag D., Alkaline phosphatasecatalysis is ultrasensitive to charge sequestered betweenthe active site zinc ions, J. Am. Chem. Soc. 2005, 127,9314–9315[Crossref]
  • [100] Gerhardt L.C., Boccaccini A.R., Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering, Materials2010, 3, 3867–3910[Crossref]
  • [101] Ritger P.L., Peppas N.A., A simple equation for descriptionof solute release II. Fickian and anomalous release fromswellable devices, J. Control. Release 1987, 5, 37–42[Crossref]
  • [102] Vallet-Regí M., Balas F., Arcos D., Mesoporous materials fordrug delivery, Angew. Chem. Int. Ed. Engl. 2007, 46, 7548–7558[Crossref]
  • [103] Smith D.C., A new dental cement, Br. Dent. J. 1968, 125, 381-384
  • [104] Wilson A.D., Kent B.E., The glass-ionomer cement: a newtranslucent cement for dentistry, J. Appl. Chem. Biotech. 1971,21, 313
  • [105] Peters W.J., Jackson R.W., Smith D.C., Studies of the Stabilityand Toxicity of Zinc Polyacrylate (polycarboxylate) Cements(PAZ)*, J. Biomed. Mater. Res. 1974, 8, 53–60[Crossref]
  • [106] Darling M., Hill R., Novel polyalkenoate (glass-ionomer) dentalcements based on zinc silicate glasses, Biomaterials 1994, 15,299–306[Crossref]
  • [107] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W.,Clarkin O.M., et al., Evaluation of two novel aluminum-free,zinc-based glass polyalkenoate cements as alternatives toPMMA bone cement for use in vertebroplasty and balloonkyphoplasty, J. Mater. Sci. Mater. Med. 2010, 21, 59–66[Crossref]
  • [108] Qiao Y., ZhangW., Tian P., Meng F., Zhu H., Jiang X., et al., Stimulationof bone growth following zinc incorporation into biomaterials,Biomaterials 2014, 35, 6882–6897 [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_bglass-2015-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.