Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Organocatalytic Enantioselective [3+2]
Cycloaddition of Azomethine Ylides and Acrolein

Content

Title variants

Languages of publication

EN

Abstracts

EN
The [3+2]-cycloaddition reaction between
acrolein and in situ generated acyclic azomethine ylides
promoted by a chiral secondary amine to generate C-3
unsubstituted pyrrolidines has been studied in detail.
Optimum conditions involve the use of the cheap and
readily available l-Proline as catalyst to afford the
pyrrolidine cycloadduct with complete diastereomeric
control and up to 80% enantiomeric control.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

received
19 - 1 - 2015
online
26 - 3 - 2015
accepted
9 - 2 - 2015

Contributors

  • Department
    of Organic Chemistry II. University of the Basque Country (UPV/
    EHU). P.O. Box 644, 48080 Bilbao, Spain
author
  • Department
    of Organic Chemistry II. University of the Basque Country (UPV/
    EHU). P.O. Box 644, 48080 Bilbao, Spain
author
  • Department
    of Organic Chemistry II. University of the Basque Country (UPV/
    EHU). P.O. Box 644, 48080 Bilbao, Spain
  • Department
    of Organic Chemistry II. University of the Basque Country (UPV/
    EHU). P.O. Box 644, 48080 Bilbao, Spain
  • Department
    of Organic Chemistry II. University of the Basque Country (UPV/
    EHU). P.O. Box 644, 48080 Bilbao, Spain

References

  • [1] Huisgen R., Angew. Chem. Int. Ed., 1,3-Dipolar cycloadditions. Past and future, 1963, 2, 565-598.
  • [2] Huisgen R., On the mechanism of 1,3-dipolar cycloadditions. A reply, J. Org. Chem., 1968, 33, 2291-2297.
  • [3] Huisgen R., The concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates, J. Org. Chem., 1976, 41, 403-419.
  • [4] Firestone R.A., On the mechanism of 1,3-dipolar cycloadditions, J. Org. Chem., 1968, 33, 2285-2290
  • [5] Firestone R.A., Orientation in 1,3-dipolar cycloadditions according to the diradical mechanism. Partial formal charges in the linnett structures of the diradical intermediate, J. Org. Chem., 1972, 37, 2181-2191.
  • [6] Firestone R.A., The diradical mechanism for 1,3-dipolar cycloadditions and related thermal pericyclic reactions, Tetrahedron, 1977, 33, 3009-3039
  • [7] Houk K.N., Firestone R.A., Munchausen L.L., Mueller P.H., Arison B.H., Garcia L.A., Stereospecificity of 1,3-dipolar cycloadditions of p-nitrobenzonitrile oxide to cis- and trans-dideuterioethylene, J. Am. Chem. Soc., 1985, 107, 7227-7228.
  • [8] Gothelf K.V., Jørgensen K.A., Asymmetric 1,3-dipolar cycloaddition reactions, Chem. Rev., 1998, 98, 863-909.
  • [9] Fleming I., Frontier Orbitals and Organic Chemical Reactions, Wiley-Interscience, London, 1976.
  • [10] Houk K.N., Sims J., Watts C. R., Luskus L. J., Origin of reactivity, regioselectivity, and periselectivity in 1,3-dipolar cycloadditions, J. Am. Chem. Soc., 1973, 95, 7301-7315.
  • [11] Sustmann R., A simple model for substituent effects in cycloaddition reactions. I. 1,3-dipolar cycloadditions, Tetrahedron Lett., 1971, 12, 2717-2720.
  • [12] Pandey G., Banerjee P., Gadre S.R., Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides, Chem. Rev., 2006, 106, 4484-4517.
  • [13] Nájera C., Sansano J.M., Catalytic enantioselective 1,3-dipolar cycloaddition reaction of azomethine ylides and alkenes: the direct strategy to prepare enantioenriched highly substituted proline derivatives, Angew. Chem. Int. Ed., 2005, 44, 6272-6276.
  • [14] Husinec S., Savic V., Chiral catalysts in the stereoselective synthesis of pyrrolidine derivatives via metallo-azomethine ylides, Tetrahedron: Asymmetry, 2005, 16, 2047-2061.
  • [15] Felpin F.-X., Lebreton J., Recent advances in the total synthesis of piperidine and pyrrolidine natural alkaloids with ring-closing metathesis as a key step, Eur. J. Org. Chem. 2003, 3693-3712.
  • [16] Randjelovic J., Simic M., Tasic G., Husinec S., Savic V., Organocatalysis in synthesis of pyrrolidine derivatives via cycloaddition reactions of azomethine ylides, Curr. Org. Chem., 2014, 18, 1073-1096.
  • [17] Han M.-Y., Jia J.-Y., Wang W., Recent advances in organocatalytic asymmetric synthesis of polysubstituted pyrrolidines, Tetrahedron Lett., 2014, 55,784-794.
  • [18] Pyrrolidines as chiral reagents for asymmetric synthesis, Ed. Paquette L.A., Wiley, Chichester, 2003.
  • [19] Enders D., Thiebes C., Efficient stereoselective syntheses of piperidine, pyrrolidine, and indolizidine alkaloids, Pure. Appl. Chem., 2001, 73, 573-578.
  • [20] O’hagan D., Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids, Nat. Prod. Rep., 2000, 17, 435-446.
  • [21] Pinder A.R., Pyrrole, pyrrolidine, piperidine, pyridine, and azepine alkaloids, Nat. Prod. Rep. 1992, 9, 17-23.
  • [22] Massiot G., Ddelaude C. in Alkaloids, Ed. Brossi A., Academic Press, New York, 1996, 27, 269-322.
  • [23] Whitesell J.K., C2 symmetry and asymmetric induction, Chem. Rev., 1989, 89, 1581-1590.
  • [24] Fache F., Schultz E., Tommasino M.L., Lemaire M., Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis, Chem. Rev., 2000, 100, 2159-2232.
  • [25] Narayan R., Potowski M., Jia Z.-J., Antonchick A.P., Waldmann H., Catalytic enantioselective 1,3-dipolar cycloadditions of azomethine ylides for biology-oriented synthesis, Acc. Chem. Res., 2014, 47, 1296-1310.
  • [26] Adrio J., Carretero J.C., Recent advances in the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides, Acc. Chem. Res., 2014, 47, 12434-12446.
  • [27] Nájera C., Sansano J.M., Coinage metal complexes as chiral catalysts for 1,3-dipolar cycloadditions, J. Organomet. Chem., 2014, 771, 78-92.
  • [28] Adrio J., Carretero J.C., Novel dipolarophiles and dipoles in the metal-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides, Chem. Commun., 2011, 47, 6784-6794.
  • [29] Garner P., Kaniskan H. U., The asymmetric [C+NC+CC] coupling reaction: development and application to natural product synthesis, Curr. Org. Synth., 2010, 7, 348-362.
  • [30] Nájera C., Sansano J.M., Yus M., Metal complexes versus organocatalysts in asymmetric 1,3-dipolar cycloadditions, J. Braz. Chem. Soc., 2010, 21, 377-412.
  • [31] Nájera C., Sansano J.M., Enantioselective cycloadditions of azomethine ylides, Top Heterocycl. Chem., 2008, 12, 117-145.
  • [32] Nájera C., Sansano J.M., Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides and Alkenes: The Direct Strategy To Prepare Enantioenriched Highly Substituted Proline Derivatives, Angew. Chem. Int. Ed., 2005, 44, 6272-6276.
  • [33] Gothelf A.S., Gothelf K.V., Hazell R.G., Jørgensen K.A., Catalytic asymmetric 1,3-dipolar cycloaddition reactions of azomethine ylides-a simple approach to optically active highly functionalized proline derivatives, Angew. Chem. Int. Ed., 2002, 41, 4236-4238.
  • [34] Longmire J.M., Wang B., Zhang X., Highly Enantioselective Ag(I)-Catalyzed [3+2] Cycloaddition of Azomethine Ylides, J. Am. Chem. Soc., 2002, 124, 13400-13401.
  • [35] Chen C., Li X., Schreiber S.L., Novel binding interactions of the dna fragment d(pgpg) cross-linked by the antitumor active compound tetrakis(μ-carboxylato)dirhodium(II,II), J. Am. Chem. Soc., 2003, 125, 10714-10724.
  • [36] For the first examples using stoichiometric chiral metal complexes, see: Allway P., Grigg R., Chiral Co(II) and Mn(II) catalysts for the 1,3-dipolar cycloaddition reactions of azomethine ylides derived from arylidene imines of glycine, Tetrahedron Lett., 1991, 32, 5817-5820.
  • [37] R. Grigg, Asymmetric cascade 1,3-dipolar cycloaddition reactions of imines, Tetrahedron: Asymmetry, 1995, 6, 2475-2486.
  • [38] Relevant examples using catalytic copper complexes: Maroto E.E., Filippone S., Suarez M., Martinez-Alvarez R., Cozar A., Cossio F.P., Martin N., Stereodivergent synthesis of chiral fullerenes by [3+2] cycloadditions to C60, J. Am. Chem. Soc., 2014, 136, 705-712.
  • [39] Chaulagain M.R., Felten A.E., Gilbert K., Aron Z.D., Diastereo- and enantioselective three-component coupling approach to highly substituted pyrrolidines, J. Org. Chem., 2013, 78, 9471-9476.
  • [40] Castello L.M., Nájera C., Sansano J.M., Larrañaga O., Cozar A., Cossio F.P., Phosphoramidite-Cu(OTf)2 complexes as chiral catalysts for 1,3-dipolar cycloaddition of iminoesters and nitroalkenes, Org. Lett., 2013, 15 2902.
  • [41] Conde E., Bello D., Cozar A., Sanchez M., Vazquez M.A., Cossio F.P., Densely substituted unnatural l- and d-prolines as catalysts for highly enantioselective stereodivergent (3+2) cycloadditions and aldol reactions, Chem. Sci., 2012, 3, 1486.
  • [42] Teng H.-L., Huang H., Tao H.-Y., Wang C.-J., Morita-Baylis-Hillman adducts as effective dipolarophiles in copper(I)-catalyzed 1,3-dipolar cycloaddition with azomethine ylides: asymmetric construction of pyrrolidine derivatives containing quaternary stereogenic center, Chem. Commun., 2011, 47, 5494-5496.
  • [43] Yamashita Y., Gui X.-X., Takashita R., Kobayashi S., Chiral silver amide-catalyzed enantioselective [3+2] cycloaddition of α-aminophosphonates with olefins, J. Am. Chem. Soc., 2010, 132, 3262-3263.
  • [44] Antonchick A.P., Gerding-Reimers C., Catarinella M., Schuermann M., Preut H., Ziegler S., Rauh D., Waldmann H., Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products, Nature Chem., 2010, 2, 735-740.
  • [45] Robles-Machin R., Gonzalez-Esguevillas M., Adrio J., Carretero J.C., Cu-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with β-phenylsulfonyl enones. ligand controlled diastereoselectivity reversal, J. Org. Chem., 2010, 75, 233-236.
  • [46] Arai T., Mishiro A., Yokoyama N., Suzuki K., Sato H., Chiral bis(imidazolidine)pyridine-Cu(OTf)2: catalytic asymmetric endo-selective [3+2] cycloaddition of imino esters with nitroalkenes, J. Am. Chem. Soc., 2010, 132, 5338-5339.
  • [47] Zhang Z., Yu S.-B., Hu X.-P., Wang D.-Y., Zheng Z., New chiral ferrocenyl P,S-ligands for highly diastereo-/enantioselective catalytic [3+2] cycloaddition of azomethine ylides with cyclic and acyclic enones, Org. Lett., 2010, 12, 5542-5545.
  • [48] Kim H.Y., Shih H.-J., Knabe W.E., Oh K., Reversal of enantioselectivity between the copper(I)- and silver(I)-catalyzed 1,3-dipolar cycloaddition reactions using a brucine-derived amino alcohol ligand, Angew. Chem. Int. Ed., 2009, 48, 7420-7423.
  • [49] Filipone S., Maroto E. E., Martin-Domenech A., Suarez M., Martin N., An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions, Nature Chem., 2009, 1, 578-582.
  • [50] Wang C.-J., Liang G., Xue Z.-Y., Gao F., Highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by copper(I)/TF-biphamPhos complexes, J. Am. Chem. Soc., 2008, 130, 17250-17251.
  • [51] Fukuzawa S., Oki H., Highly enantioselective asymmetric 1,3-dipolar cycloaddition of azomethine ylide catalyzed by a copper(I)/clickferroPhos complex, Org. Lett., 2008, 10, 1747-1750.
  • [52] Catalytic silver complexes: Oura I., Shimizu K., Ogata K., Fukuzawa S., Highly endo-selective and enantioselective 1,3-dipolar cycloaddition of azomethine ylide with α-enones catalyzed by a silver(I)/thioclickferroPhos complex, Org. Lett., 2010, 12, 1752-1755.
  • [53] Wang C.-J., Xue Z.-Y., Liang G., Lu Z., Highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by AgOAc/TF-BiphamPhos, Chem. Commun., 2009, 2905-2907.
  • [54] Yu S.-B., Hu X.-P., Deng J., Wang D.-Y., Duan Z.-C., Zheng Z., Enantioselective Ag(I)-catalyzed [3+2] cycloaddition of azomethine ylides using a chiral ferrocene-based phosphine–phosphoramidite ligand having a stereogenic P-center, Tetrahedron: Asymmetry, 2009, 20, 621-625.
  • [55] Iglesias-Siguenza J., Ros A., Diez E., Magriz A., Vazquez A., Alvarez E., Fernandez R., Lassaletta J.M., C2-Symmetric S/C/S ligands based on N-heterocyclic carbenes: a new ligand architecture for asymmetric catalysis, Dalton Trans., 2009, 8485-8488.
  • [56] Nájera C., Retamosa M.G., Sansano J.M., Catalytic enantioselective 1,3-dipolar cycloaddition reactions of azomethine ylides and alkenes by using phosphoramidite-silver(I) complexes, Angew. Chem. Int. Ed., 2008, 47, 6055-6058.
  • [57] Catalytic zinc complexes: Dogan O., Koyuncu H., Garner P., Bulut A., Youngs W.J., Panzner M., New zinc(II)-based catalyst for asymmetric azomethine ylide cycloaddition reactions, Org. Lett., 2006, 8, 4687-4690.
  • [58] Catalytic nickel complexes: Arai T., Yokoyama N., Mishiro A., Sato H., Catalytic asymmetric exo’-selective [3+2] cycloaddition of iminoesters with nitroalkenes, Angew. Chem. Int. Ed., 2010, 49, 7895-7898.
  • [59] Shi J.W., Zhao M.-X., Lei Z.-Y., Shi M., Axially chiral BINIM and Ni(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reactions of azomethine ylides and N-arylmaleimides, J. Org. Chem., 2008, 73, 305-308.
  • [60] Catalytic calcium complexes: Tsubogo T., Saito S., Seki K., Yamashita Y., Kobayashi S., Development of catalytic asymmetric 1,4-addition and [3+2] cycloaddition reactions using chiral calcium complexes, J. Am. Chem. Soc., 2008, 130, 13321-13322.
  • [61] Catalytic gold complexes: Martín-Rodríguez M., Nájera C., Sansano J. M., Wu F.-L., Binap-gold(I) trifluoroacetate as a bifunctional catalyst for the synthesis of chiral prolines through 1,3-dipolar cycloaddition of azomethine ylides, Tetrahedron: Asymmetry, 2010, 21, 1184-1186.
  • [62] Melhado A.D., Luparia M., Toste F.D., Au(I)-catalyzed enantioselective 1,3-dipolar cycloadditions of Münchnones with electron-deficient alkenes, J. Am. Chem. Soc., 2007, 129, 12638-12639.
  • [63] Catalytic iron complexes: Wu H., Wang B., Liu H., Wang L., A novel Fe(II)/diaryl prolinol catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with alkenes, Tetrahedron, 2011, 67, 1210-1215.
  • [64] Vicario J.L., Reboredo S., Badia D., Carrillo L., Organocatalytic enantioselective [3+2] cycloaddition of azomethine ylides and α,β-unsaturated aldehydes, Angew. Chem. Int. Ed., 2007, 46, 5168-5170.
  • [65] Reboredo S., Vicario J.L., Carrillo L., Reyes E., Uria U., A simple synthesis of polysubstituted pyrrolidines by an organocatalytic three-component approach featuring a one-pot condensation and [3+2]-cycloaddition reaction in aqueous medium, Synthesis, 2013, 45, 2669-2678.
  • [66] Reboredo S., Reyes E., Vicario J.L., Badia D., Carrillo L., Cozar A., Cossio F. P., An amine-catalyzed enantioselective [3+2] cycloaddition of azomethine ylides and α,β-unsaturated aldehydes: applications and mechanistic implications, Chem. Eur. J., 2012, 18, 7179-7188.
  • [67] Fernández N., Carrillo L., Vicario J.L., Badia D., Reyes E., Organocatalytic enantioselective [3+2] cycloaddition using stable azomethine ylides, Chem. Commun., 2011, 47, 12313-12315.
  • [68] Reboredo S., Vicario J.L., Badia D., Carrillo L., Reyes E., Complete 2,5-diastereocontrol in the organocatalytic enantioselective [3+2] cycloaddition of enals with azomethine ylides derived from a-iminocyanoacetates: asymmetric synthesis of pyrrolidines with four stereocentres, Adv. Synth. Catal., 2011, 353, 3307-3312.
  • [69] Iza A., Carrillo L., Vicario J.L., Badia D., Reyes E., The organocatalytic [3+2] cycloaddition of azomethine ylides and α,β-unsaturated aldehydes as a convenient tool for the enantioselective synthesis of pyrrolizidines and indolizidines, Org. Biomol. Chem., 2010, 8, 2238-2244.
  • [70] MacMillan, D.W.C., The advent and development of organocatalysis, Nature 2008, 455, 304-308.
  • [71] Erkkila, A., Majander, I., Pihko, P.M., Iminium catalysis, Chem. Rev. 2007, 107, 5416-5470.
  • [72] Lelais, G., MacMillan, D.W.C., Modern strategies in organic catalysis: The advent and development of iminium activation, Aldrichim. Acta 2006, 39, 79-87.
  • [73] Ibrahem I., Rios R., Vesely J., Cordova A., Organocatalytic asymmetric multi-component [C+NC+CC] synthesis of highly functionalized pyrrolidine derivatives, Tetrahedron Lett., 2007, 48, 6252-6257.
  • [74] Rios R., Ibrahem I., Vesely J., Sundén H., Córdova A., Organocatalytic asymmetric 5-hydroxypyrrolidine synthesis: a highly enantioselective route to 3-substituted proline derivatives, Tetrahedron Lett., 2007, 48, 8695-8699.
  • [75] S. Lin, L. Deiana, G.-L. Zhao, J. Sun, A. Córdova, Dynamic one-pot three-component catalytic asymmetric transformation by combination of hydrogen-bond-donating and amine catalysts, Angew. Chem. Int. Ed., 2011, 50, 7624-7630.
  • [76] Breistein P., Johansson J., Ibrahem I., Lin S., Deiana L., Sun J., Cordova A., One-step catalytic enantioselective α-quaternary 5-hydroxyproline synthesis: An asymmetric entry to highly functionalized α-quaternary proline derivatives, Adv. Synth. Catal., 2012, 354, 1156-1162.
  • [77] The presented N-acylpyrrolidines are non-nucleoside small molecules which act as a potent inhibitor of RNA-dependent RNA polymerase (NS5B) in enzymatic assays and inhibits viral RNA replication in cell-based replication assays. For detailed information, see: Burton G., Ku T.W., Carr T. J., Kiesow T., Sarisky R.T., Lin-Goerke J., Baker A., Earnshaw D.L., Hofmann G.A., Keenan R.M., Dhanak D., Identification of small molecule inhibitors of the hepatitis C virus RNA-dependent RNA polymerase from a pyrrolidine combinatorial mixture, Bioorg. Med. Chem. Lett., 2005, 15, 1553-1556.
  • [78] Burton G., Ku T.W., Carr, T.J., Kiesow T., Sarisky R.T., Lin-Goerke J., Hofmann G.A., Slater M.J., Haigh D., Dhanak D., Johnson V.K., Parry N.R., Thommes P., Studies on acyl pyrrolidine inhibitors of HCV RNA-dependent RNA polymerase to identify a molecule with replicon antiviral activity, Bioorg. Med. Chem. Lett., 2007, 17, 1930-1933.
  • [79] Nájera C., Retamosa M.G., Sansano J.M., Cozar A., Cossio F.P., Diastereoselective 1,3-dipolar cycloaddition reactions between azomethine ylides and chiral acrylates derived from methyl (S)- and (R)-Lactate - synthesis of hepatitis C virus RNA-dependent RNA polymerase inhibitors, Eur. J. Org. Chem., 2007, 5038-5049.
  • [80] Nájera C., Retamosa M.G., Martín-Rodríguez M., Sansano J. M., de Cozar A., Cossio, F.P., Synthesis of prolines by enantioselective 1,3-dipolar cycloaddition of azomethine ylides and alkenes catalyzed by chiral phosphoramidite-silver(I) complexes, Eur. J. Org. Chem., 2009, 5622-5634.
  • [81] Martín-Rodríguez M., Nájera C., Sansano J.M., Cozar A., Cossio F.P., Chiral gold(I) vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor, Beilstein J. Org. Chem., 2011, 7, 988.
  • [82] Agbodjan A.A., Cooley B.E., Copley R.C.B., Corfield J.A., Flanagan R.C., Glover B.N., Cguidetti R., Haigh D., Howes P.D., Jackson M.M, Matsuoka R.T., Medhurst K.J., Millar A., Sharp M.J., Slater M.J., Toczko J.F., Xie S., Asymmetric synthesis of an N-acylpyrrolidine for inhibition of HCV polymerase, J. Org. Chem., 2008, 73, 3094.
  • [83] The direct use of acrolein as dipolarophile in [3+2] cycloadditions has rarely been studied. For the use of acrolein employing nitrones as dipoles, see: Kano T., Hashimoto T., Maruoka K., Asymmetric 1,3-dipolar cycloaddition reaction of nitrones and acrolein with a bis-titanium catalyst as chiral lewis acid, J. Am. Chem. Soc., 2005, 127, 11926-11927.
  • [84] Jen W.S., Wiener J.J.M., MacMillan D.W.C., New Strategies for Organic Catalysis: The First Enantioselective Organocatalytic 1,3-Dipolar Cycloaddition, J. Am. Chem. Soc., 2000, 122, 9874-9875.
  • [85] For the use of acrolein employing azomethine imines as dipoles, see: Suga H., Arikawa T., Itoh K., Okumura Y., Kakehi A., Shiro M., Asymmetric 1,3-dipolar cycloaddition reactions of azomethine imines with acrolein catalyzed by l-proline and its derivatives, Heterocycles, 2010, 81, 1669-1688.
  • [86] For the use of acrolein employing azomethine ylides in a non-enantioselective version, see: Gu Y.G., Xu Y., Krueger A.C., Madigan D., Sham H.L., 1,3-Dipolar cycloaddition reactions of ester-stabilized azomethine ylides with acrolein: a one-pot regio- and stereoselective synthesis of N-substituted 4-formyl-5-vinyl proline carboxylates, Tetrahedron Lett., 2002, 43, 955-957.
  • [87] The cycloaddition adduct was found to epimerize at the formyl-containing stereocentre upon standing at r.t.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_asorg-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.