Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 1 | 87-104

Article title

Ac electrical parameters of Al-ZnPc-Al organic semiconducting films


Title variants

Languages of publication



The ac electrical parameters of thermally evaporated zinc phthalocyanine, ZnPc, semiconducting thin films was measured in the temperature range of 180–390 K and frequency between 0.1 and 20 kHz. Aluminum electrode contacts were utilized to sandwich the organic ZnPc semiconducting films. Capacitance and loss tangent decreased rapidly with frequency at high temperatures, but at lower temperatures a weak variation is observed. An equivalent circuit model assuming ohmic contacts could qualitatively and successfully explains capacitance and loss tangent behavior.The ac conductivity showed strong dependence on both temperature and frequency depending on the relevant temperature and frequency range under consideration. Ac conductivity σ (ω) is found to vary with ω, as ω
s with the index s ≤ 1.35 suggesting a dominant hopping conduction process at low temperatures (< 250 K) and high frequency. The conductivity of some samples did not increase monotonically with temperature. This behavior was attributed to oxygen exhaustion of the sample as its temperature is increased. The ac conductivity behavior at low temperatures of ZnPc films could be described well by Elliott model assuming hopping of charge carriers between localized sites.










Physical description


1 - 3 - 2006
1 - 3 - 2006


  • Physics Department, College of Science and Technology, Al-Quds University, Jerusalem, P.O. Box 20002, West Bank, Palestine via, Israel
  • Physics Department, College of Science and Technology, Al-Quds University, Jerusalem, P.O. Box 20002, West Bank, Palestine via, Israel
  • Thin Films Laboratory, Physics Department, Keele University, Keele, Staffordshire, ST5 5BG, UK


  • [1] R.A. Collins and M.K. Ellis: “Sensitivity of lead phthalocyanine thin films to ammonia and nitrogen dioxide”, Chemtronics, Vol. 5, (1991), pp. 93–95; R.A. Collins and K.A. Mohammed: “Gas sensitivity in some metal phthalocyanines”, J. Phys. D: Appl. Phys., Vol. 21, (1988), pp. 154-161.
  • [2] C.L. Honeybourne and R.J. Ewen: “The enhancement of dark d.c. conductivity by gas adsorption on thin films of macrocyclic copper complexes”, J. Phys. Chem. Solids, Vol. 44, (1983), pp. 833–838. http://dx.doi.org/10.1016/0022-3697(83)90017-3[Crossref]
  • [3] R.L. Van Ewyk, A.V. Chadwick and J.D. Wright: “Effects of oxygen, nitrogen dioxide and triflouforen on photoconductivity of perulene and phthalocyanines single crystals”, J. Chem. Soc. Faraday Trans., Vol. 1(77), (1981), pp. 73–79; D. Mayes, B. Remaki and G. Guillaud: “Space charge analysis in doped zinc phthalocyanine thin films”, Optical Materials, Vol. 9, (1998) pp. 240-244.
  • [4] A.M. Saleh, A.O. Abu Hilal and R.D. Gould: “Investigation of electrical properties (ac and dc) of organic zinc phthalocyanine, ZnPc, semiconductor thin films”, Current Appl. Phys., Vol. 3, (2003), pp. 345–350. http://dx.doi.org/10.1016/S1567-1739(02)00243-2[Crossref]
  • [5] U. Drechsles, M. Pfaff and M. Hanack: “Synthesis of Novel functionalised zinc phthalocyanines applicable in photodynamic therapy”, Europ. J. Organic Chem., Vol. 1999, (1999), pp. 3411–3453.
  • [6] E. Orti and J.L. Brades: “Electronic structure of metal-free phthalocyanine: A valence effective Hamiltonian theoretical study”, J. Chem. Phys., Vol. 89, (1988), pp. 1009–1016. http://dx.doi.org/10.1063/1.455251[Crossref]
  • [7] R.D. Gould and A.K. Hassan: “A.c. electrical properties of thermally evaporated thin films of copper phthalocyanine”, Thin Solid Films, Vol. 223, (1992), pp. 334–340. http://dx.doi.org/10.1016/0040-6090(93)90541-V[Crossref]
  • [8] S.A. James, A.K. Ray and S. Silver: “Dielectric and optical studies of sublimed MoOPc films”, Phys. Stat. Sol. A, Vol. 129, (1992), pp. 435–441.
  • [9] T.G. Abdel-Malik, R.M. Abdel-Latif, M. El-Shbasy and M. Abdel-Hamid: “Compensation effect in the electrical process in phthalocyanines”, Indian J. Phys., Vol. 62A, (1988), pp. 17–23.
  • [10] A.M. Saleh, R.D. Gould and A.K. Hassan: “Dependence of AC electrical parameters on Frequency and temperature in zinc phthalocyanine thin films” Phys. Stat. Sol. A), Vol. 139, (1993), pp. 379–389.
  • [11] S.I. Shihub and R.D. Gould: “Frequency dependence of electronic conduction parameters in evaporated thin films of cobalt phthalocyanine”, Thin Solid Films, Vol. 254, (1995), pp. 187–193. http://dx.doi.org/10.1016/0040-6090(94)06240-L[Crossref]
  • [12] N.M. Amar, A.M. Saleh and R.D. Gould: “Influence of temperature and frequency on the electrical parameters of thermally evaporated metal-free phthalocyanine H2Pc thin films”, Appl. Phys. A, Vol. 76, (2003) pp. 77–82. http://dx.doi.org/10.1007/s003390201306[Crossref]
  • [13] H.S. Nalwa and P. Vazudevan: “Dielectric properties of cobalt phthalocyanine”, J. Mater. Sci. Letters, Vol. 2, (1983) pp. 22–24. http://dx.doi.org/10.1007/BF00719947[Crossref]
  • [14] T.D. Anthopoulos and T.S. Shafai: “SCLS measurements in Nickel phthalocyanine thin films”, Phys. Stat. Sol. A, Vol. 181, (2000), pp. 569–574. http://dx.doi.org/10.1002/1521-396X(200010)181:2<569::AID-PSSA569>3.0.CO;2-Y[Crossref]
  • [15] M. Pfeiffer, A. Beyer, B. Plönnigs, A. Nollau, T. Fritz, K. Leo, D. Schlettwein, S. Hiller and D. Wöhrle: “Controlled p-doped of pigment layers by co-sublimation: Basic mechanisms and implications for their use in organic photovoltaic cells” Sol. Energy Mat. Sol. Cells, Vol. 63, (2000), pp. 83–89. http://dx.doi.org/10.1016/S0927-0248(00)00022-2[Crossref]
  • [16] W. Gao and A. Kahn: “Electronic structure and current injections in zinc phthalocyanine doped with tetrafluoro-teracyanoquinodimethene: Interface versus bulk effects”, Org. Electron., Vol. 3, (2002) pp. 53–63. http://dx.doi.org/10.1016/S1566-1199(02)00033-2[Crossref]
  • [17] K. Chuan Ho and Y. Ham Tsou: “Chemiresistors-type NO gas sensor based on nickel phthalocyanine thin films”, Sens. Actuators B, Vol. 77, (2001), pp. 253–259. http://dx.doi.org/10.1016/S0925-4005(01)00742-0[Crossref]
  • [18] R. Rellaa, A. Rizzob, A. Licciullic, P. Sicilianoa, L. Troisid and L. Vallic: “Tests in controlled atmosphere on new optical gas sensing layers based on TiO2/metal-phthalocyanine hybrid system”, Mat. Sci. Eng. C, Vol. 22, (2002), pp. 439–443. http://dx.doi.org/10.1016/S0928-4931(02)00193-5[Crossref]
  • [19] L. Hou, L. Cao, X. Li, H. Cui, D. Jiang, G. Zeng and S. Xi: “Study of ferric oxide nano-particles-tris-(2,4-di-tiamylyphenoxy)-(8-quinolinolyl) copper phthalocyanine composite LB film”, Thin Solid Films, Vol. 365, (2000), pp. 129–133. http://dx.doi.org/10.1016/S0040-6090(99)01101-3[Crossref]
  • [20] Z. Zhi-lin, J. Xue-yin, Z. Wen-quing, Z. Buxin and X. Shao-hong: “A white organic light emitting diode with improved stability”, J. Phys. D: Appl. Phys., Vol. 34, (2001), pp. 3083–3087. http://dx.doi.org/10.1088/0022-3727/34/20/313[Crossref]
  • [21] F.Z. Henari: “Optical switching in organometallic phthalocyanine”, J. Opt. A: Pure Appl. Opt., Vol. 3, (2001), pp. 188–190. http://dx.doi.org/10.1088/1464-4258/3/3/306[Crossref]
  • [22] H.R. Kerp and E.E. van Faassen: “Effects of oxygen on exciton transport in zinc phthalocyanine layers”, Chem. Phys. Lett., Vol. 332, (2002), pp. 5–12. http://dx.doi.org/10.1016/S0009-2614(00)01227-6[Crossref]
  • [23] B. Schöllorn, J.P. Germain, A. Pauly, C. Maleysoon and J.P. Blanc: “Influence of peripheral electron-withdrawing substituents on the conductivity of zinc phthalocyanine in the presence of gases. Part I: reducing gases”, Thin Solid Films, Vol. 326, (1998), pp. 245–250. http://dx.doi.org/10.1016/S0040-6090(98)00553-7[Crossref]
  • [24] J.P. Germain, A. Pauly, C. Maleysoon, J.P. Blanc and B. Schöllorn: “Influence of peripheral electron-withdrawing substituents on the conductivity of zinc phthalocyanine in the presence of gases. Part 2: Oxidizing gases”, Thin Solid Films, Vol. 333, (1998), pp. 235–239. http://dx.doi.org/10.1016/S0040-6090(98)00830-X[Crossref]
  • [25] L. Gao, X. Qian, L. Zhang and Y. Zhang: “Tetra-trifluoroethoxyl zinc phthalocyanine: potential photosensitizer for use in photodynamic therapy of cancer”, J. Photochem. Photobiol., Vol. 65, (2001), pp. 35–38. http://dx.doi.org/10.1016/S1011-1344(01)00250-0[Crossref]
  • [26] G.A. Rosquete-Pina, C. Zorrilla, S. Velumani, J. Arenas-Alatorre and J.A. Ascencio: “Theoretical and experimental analysis of ZnPc for its local ordering and electronic structure”, Appl. Phys. A: Materials Sci. & Processing, Vol. 79, (2004), pp. 1913–1918.
  • [27] T.G. Abdel-Malik, A.M. Abdeen, H.M. El-Labany and A.A. Aly: “Bulk trapping in β-zinc phthalocyanine single crystals”, Phys. Stat. Sol. A, Vol. 72, (1982), pp. 99–104.
  • [28] B. Boudjema, G. Guilland, M. Gamoudi, M. Maitrot, J.J. Andre, M. Martin and J. Simon: “Characterization of metallo-phthalocyanine-metal contacts: electrical properties in a large frequency range”, J. Appl. Phys., Vol. 56, (1984), pp. 2323–2329. http://dx.doi.org/10.1063/1.334267[Crossref]
  • [29] A. Twarowski: “Temperature dependence of Schottky barrier capacitance in α-and β-zinc phthalocyanine”, J. Chem. Phys., Vol. 77, (1982), pp. 4698–4703; A. Twarowski: “Oxygen doping of zinc phthalocyanine thin films”, J. Chem. Phys., Vol. 77, (1982) pp. 5840-5846. http://dx.doi.org/10.1063/1.444371[Crossref]
  • [30] R.A. Collins and K.A. Mohammed: “Phase behavior of cobalt, nickel and zinc phthalocyanines”, Thermochimica Acta, Vol. 109, (1987), pp. 397–402. http://dx.doi.org/10.1016/0040-6031(87)80036-9[Crossref]
  • [31] M. Sakaguchi and M. Ohta: “Environmental effect on surface conductivity and the α → β phase transition of zinc phthalocyanine”, J. Sol. State Chem., Vol. 61, (1986) pp. 130–134. http://dx.doi.org/10.1016/0022-4596(86)90014-9[Crossref]
  • [32] A.K. Mohesen, A.M. Saleh and R.D. Gould: “Conduction processes and dc electrical parameters of thermally evaporated iron phthalocyanine (FePc) thin films with aluminum electrodes”, Dirasat (Jordan University Res. Journal), Vol. 28, (2001), pp. 63–71.
  • [33] F.S. Mahmood and R.D. Gould: “A.c. properties of ZnO thin films prepared by rf magnetron sputtering”, Thin Solid Films, Vol. 253, (1994), pp. 529–533. http://dx.doi.org/10.1016/0040-6090(94)90379-4[Crossref]
  • [34] A. Goswami and A.P. Goswami: “Dielectric and optical properties of ZnS films”, Thin Solid Films, Vol. 16, (1973), pp. 175–185. http://dx.doi.org/10.1016/0040-6090(73)90166-1[Crossref]
  • [35] Z.T. Al-Dahan and C.A. Hogarth: “Alternating current electrical properties of evaporated cerium dioxide films”, Int. J. Electronics, Vol. 63, (1987), pp. 573–585. [Crossref]
  • [36] R.D. Gould and S.A. Awan: “Dielectric properties of AlNx thin films prepared by rf magnetron sputtering of Al using a N2/Ar sputtering gas mixture”, Thin Solid Films, Vol. 469-470, (2004), pp. 184–189. http://dx.doi.org/10.1016/j.tsf.2004.08.099[Crossref]
  • [37] Yu.A. Vidadi, K.Sh. Kocharli, B.Sh. Barkhalov and S.A. Saredinov: “Alternating current investigation of copper phthalocyanine films in the presence of blocking contacts”, Phys. Stat. Sol. A, Vol. 34, (1976), pp. K77–K81.
  • [38] J.G. Simmons, G.S. Nadkani and M.C. Lancaster: “Alternating current electrical properties of highly doped insulating films”, J. Appl. Phys., Vol. 41, (1970), pp. 538–544. http://dx.doi.org/10.1063/1.1658709[Crossref]
  • [39] A.K. Hassan and R.D. Gould: “The interpretation of current density-voltage and activation energy measurements on freshly prepared and heat-treated nickel phthalocyanine thin films”, Int. J. Electron., Vol. 74, (1993), pp. 59–65. [Crossref]
  • [40] A.N. Blagodarov, E.L. Lutsenko and L.D. Rozenshtein: “Low-frequency conductivity of phthalocyanine films with unipolar injection”, Sov. Physics:-Solid State, Vol. 11, (1970), pp. 2747–2748.
  • [41] Yu.A. Vidadi, L.D. Rozenshtein and E.A. Chistyakov: “Hopping and band conductivities in organic semiconductors”, Sov. Phys:-Solid State, Vol. 11, (1969), pp. 173–175; Yu.A. Vidadi, L.D. Rozenshtein and E.A. Chistyakov: “Two-layer film photocapacitor based on phthalocyanine without a metal”, Sov. Phys:-Semiconductor, Vol. 1, (1968), pp. 1049-1050.
  • [42] S.R. Elliott: “A theory of ac conduction in chalcogenide glasses”, Phil. Mag., Vol. 36, (1977), pp. 1291–1304. [Crossref]
  • [43] A.K. Jonscher: “Alternating current diagnostics of poorly conducting thin films”, Thin Solid Films, Vol. 36, (1976) pp. 1–20. http://dx.doi.org/10.1016/0040-6090(76)90388-6[Crossref]
  • [44] J. Le Moigne and R. Evevn: “Spectroscopic properties and conductivity of thin films of partially reduced metallo-phthalocyanines”, J. Chem, Phys., Vol. 83, (1985), pp. 6472–6479. http://dx.doi.org/10.1063/1.449547[Crossref]
  • [45] S.E. Harrison and K.H. Ludewig: “Conductivity and Crystal Phase Change in Phthalocyanines”, J. Chem. Phys., Vol. 45, (1966), pp. 343–348. http://dx.doi.org/10.1063/1.1727331[Crossref]
  • [46] A. Wilson, G.P. Rigby, J.D. Wright, S.C. Thorpe, T. Terui and Y. Maruyama: “Effects of heat treatment on chemical, morphological and NO2-sensing properties of lead phthalocyanine films”, J. Mater. Chem., Vol. 2, (1992), pp. 303–308. http://dx.doi.org/10.1039/jm9920200303
  • [47] T.G. Abdel-Malik and G.A. Cox: “Charge transport in nickel phthalocyanine crystals: 1. Ohmic and space-charge-limited currents in vacuum ambient”, J. Phys. C: Solid State, Vol. 9, (1977), pp. 63–74. http://dx.doi.org/10.1088/0022-3719/10/1/012[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.