Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2006 | 4 | 1 | 42-57

Article title

Large scale multi-configuration Hartree-Fock calculation of the hyperfine structure of the ground state of vanadium

Content

Title variants

Languages of publication

EN

Abstracts

EN
The hyperfine structure of the ground state of vanadium, 51VI, is calculated in the nonrelativistic framework of the multi-configuration Hartree-Fock approximation. A configuration state function limiting algorithm is used to make the calculations feasible and to study the influence of core, valence and core-valence correlations in detail. The obtained configuration state function space captures the most important orbital correlations within 2%. Further correlations are included through configuration interaction calculation. The atomic state functions are used to evaluate the magnetic dipole hyperfine factor A and the electric quadrupole factor B. It turns out that the ab initio calculation can not capture the core polarization of the 2s shell. It introduces an error that is higher than the Hartree-Fock approximation. However, the detailed correlations being observed suggest the introduction of a wrong correlation orbital due to the algorithm being used. Neglecting this orbital leads to good agreement with 2% deviation from the experimental values for the A factors.

Publisher

Journal

Year

Volume

4

Issue

1

Pages

42-57

Physical description

Dates

published
1 - 3 - 2006
online
1 - 3 - 2006

Contributors

author
  • Research Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108, Vilnius, Lithuania

References

  • [1] G. Gaigalas, Z.R. Rudzikas and C.F. Fischer: “An efficient approach for spin-angular integrations in atomic structure calculations”, J. Phys. B, Vol. 30, (1997), pp. 3747–3771. http://dx.doi.org/10.1088/0953-4075/30/17/006[Crossref]
  • [2] A. Irimia and C.F. Fischer: “Breit-Pauli Oscillator Strengths, Lifetimes and Einstein A-Coefficients in Singly Ionized Sulphur”, Phys. Scripta, Vol. 71, (2005), pp. 172–184. http://dx.doi.org/10.1238/Physica.Regular.071a00172[Crossref]
  • [3] P. Jönsson and C.G. Wahlström: “A program for computing magnetic dipole and electric quadrupole hyperfine constants from MCHF wave functions”, Comput. Phys. Commun., Vol. 74, (1993), pp. 399–414. http://dx.doi.org/10.1016/0010-4655(93)90022-5[Crossref]
  • [4] J. Bieroń, F.A. Parpia, C.F. Fischer and P. Jönsson: “Large-scale multiconfiguration Dirac-Fock calculation of hyperfine interaction constants for nd 2 levels of Sc+ and Y+”, Phys. Rev. A, Vol. 51, (1995), pp. 4603–4610. http://dx.doi.org/10.1103/PhysRevA.51.4603[Crossref]
  • [5] K. Paduch and J. Bieroń: “Hyperfine-structure calculations in Xe II”, J. Phys. B, Vol. 33, (2000), pp. 303–311. http://dx.doi.org/10.1088/0953-4075/33/3/302[Crossref]
  • [6] L. Young, W.J. Childs, T. Dinneen, C. Kurtz, H.G. Berry and L. Engström: “Hyperfine structure of Sc II: Experiment and theory”, Phys. Rev. A, Vol. 37, (1988), pp. 4213–4219. http://dx.doi.org/10.1103/PhysRevA.37.4213[Crossref]
  • [7] W.J. Childs and L.S. Goodman: “Hyperfine structure of nine levels in two configurations of V51. I. Experimental”, Phys. Rev., Vol. 156, (1967), pp. 64–70. http://dx.doi.org/10.1103/PhysRev.156.64[Crossref]
  • [8] M.G. Edmunds: “Calculation of Hyperfine Structure of Scandium and Vanadium for Stellar Spectral Analysis”, Astron. Astrophys., Vol. 23(2), (1973), pp. 311–316.
  • [9] P. Unkel, P. Buch, J. Dembcyński, W. Ertmer and U. Johann: “Sternheimer free determination of the 51V nuclear quadrupole moment from hyperfine structure measurements”, Zeitschrift für Physik D: Atoms, Molecules and Cluster, Vol. 11, (1989), pp. 259–271. http://dx.doi.org/10.1007/BF01438497[Crossref]
  • [10] W.J. Childs: “Hyperfine structure of nine levels in two configurations of V51. II. Theoretical”, Phys. Rev., Vol. 156, (1967), pp. 71–82. http://dx.doi.org/10.1103/PhysRev.156.71[Crossref]
  • [11] P. Raghavan: “Table of nuclear moments”, Atomic Data and Nuclear Data Tables, Vol. 42, (1989), p. 189. http://dx.doi.org/10.1016/0092-640X(89)90008-9[Crossref]
  • [12] C.F. Fischer: Computational atomic structure. An MCHF approach, Institute of Physics Publishing, Bristol and Philadelphia, 1997.
  • [13] C.F. Fischer: “A general multi-configuration Hartree-Fock program”, Comput. Phys. Commun., Vol. 64, (1991), pp. 431–454. http://dx.doi.org/10.1016/0010-4655(91)90137-A[Crossref]
  • [14] C. Schwartz: “Theory of hyperfine structure”, Phys. Rev., Vol. 97, (1955), pp. 380–395. http://dx.doi.org/10.1103/PhysRev.97.380[Crossref]
  • [15] G. Gaigalas, Z. Rudzikas and O. Scharf: “Hyperfine Structure Operator in the Tensorial Form of Second Quantization”, Cent. Eur. J. Phys., Vol. 2, (2004), pp. 720–736.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1007_s11534-005-0005-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.