Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2006 | 4 | 1 | 194-206

Article title

AFM study of complement system assembly initiated by antigen-antibody complex


Title variants

Languages of publication



The shape and size of complement system C1 components assembled on a SiO2 surface after classical activation by antigen-antibody complex was determined by tapping mode atomic force microscopy (AFM). The SiO2 substrate was silanized and bovine leukemia virus proteins gp51 were covalently bound to the SiO2 substrate. Self-assembly of complement system proteins was investigated by AFM. Uniform coating of silanized surface by gp51 proteins was observed by AFM. After incubation of gp51 coated substrate in anti-gp51 antibody containing solution, Ag-Ab complexes were detected on the substrate surface by AFM. Then after treatment of Ag-Ab complex modified substrate by guinea-pig blood serum containing highly active complement system proteins for 3 minutes and 30 minutes features 2–3 times and 5–8 times higher in diameter and in height if compared with those observed after formation of Ag-Ab complex, were observed respectively on the surface of SiO2. This study revealed that AFM might be applied for the imaging of complement system assembly and provides valuable information that can be used to complement other well-established techniques.










Physical description


1 - 3 - 2006
1 - 3 - 2006


  • Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu 65, 3031, Kaunas, Lithuania
  • Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius 09, Lithuania
  • Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius 09, Lithuania


  • [1] D. Fotiadis, S. Scheuring, S.A. Müller, A. Engel and D.J. Müller: “Imaging and manipulation of biological structures with the AFM”, Micron, Vol. 33, (2002), pp. 385–397. http://dx.doi.org/10.1016/S0968-4328(01)00026-9[Crossref]
  • [2] S. Scheuring, F. Reiss-Husson, A. Engel, J.L. Rigaud and J.L. Ranck: “Highresolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2”, Embo J., Vol. 20, (2001), pp. 3029–3035. http://dx.doi.org/10.1093/emboj/20.12.3029[Crossref]
  • [3] H.J. Müller-Eberhard and P.A. Miescher (Eds.): Complement, Verlag, Berlin, 1985.
  • [4] B. Walivaara, A. Askendal, I. Lundstrom and P. Tengvall: “Imaging of the early events of classical complement activation using antibodies and atomic force microscopy”, J. Coll. Interface. Sci., Vol. 187, (1997), pp. 121–127. http://dx.doi.org/10.1006/jcis.1996.4673[Crossref]
  • [5] L. Mark, W.H. Lee, O.B. Spiller, D. Proctor, D.J. Blackbourn, B.O. Villoutreix and A.M. Blom: “The Kaposi's sarcoma-associated herpesvirus complement control protein mimics human molecular mechanisms for inhibition of the complement system”, J. Biol. Chem., Vol. 279, (2004), pp. 45093–45101. http://dx.doi.org/10.1074/jbc.M407558200[Crossref]
  • [6] K.B.M. Reid: “The complement system: A major effector mechanism in humoral immunity”, Immunologist, Vol. 3, (1995), pp. 206–211.
  • [7] N.R. Cooper: “Activation of the complement system”, Contemp. Topics Mol. Immunol., Vol. 2, (1973), pp. 155–183.
  • [8] J.S. Presanis, M. Kojima and R.B. Sim: “Biochemistry and genetics of mannanbinding lectin (MBL)”, Biochem. Soc. Trans., Vol. 31, (2003), pp. 748–752. http://dx.doi.org/10.1042/BST0310748[Crossref]
  • [9] J.W Goers, V.N. Schumaker, M.M. Glovsky, J. Rebek and H.J. Muller-Eberhard: “Complement activation by a univalent hapten-antibody complex”, J. Biol. Chem., Vol. 250, (1975), pp. 4918–4925.
  • [10] J. Kuby: Immunology, W.H. Freeman and Company, New York, 1997.
  • [11] H.J. Müller-Eberhard: “Molecular organization and function of the complement system”, Ann. Rev. Biochem., Vol. 57, (1988). pp. 321–347. http://dx.doi.org/10.1146/annurev.bi.57.070188.001541[Crossref]
  • [12] A. Ramanaviciene, J. Acaite and A. Ramanavicius: “Circulating immune complexes as indicators of environmental contamination”, Envir. Toxicol., Vol. 19, (2004), pp. 505–509. http://dx.doi.org/10.1002/tox.20056[Crossref]
  • [13] G. Goldberger, M.L. Thomas, B.F. Tack, J. Williams, H.R. Colten and G.N. Abraham: “NH2-terminal structure and cleavage of guinea pig pro-cs, the precursor of the third complement componen”, J. Biol. Chem., Vol. 256, (1981), pp. 12617–12619.
  • [14] J. Bramham, C.T. Thai, D.C. Soares, D. Uhrin, R.T. Ogata and P.N. Barlow: “Functional insights from the structure of the multifunctional C345C domain of C5 of complement”, J. Biol. Chem., Vol. 280, (2005), pp. 10636–10645. http://dx.doi.org/10.1074/jbc.M413126200[Crossref]
  • [15] K.D. Caldwell, T. Sandberg, J. Hellstrom, P. Tengvall and J. Andersson: “Mucin adsorption to polymeric surfaces: kinetics, quantification and reduction of complement activation”, Abstracts of papers of the American chemical society, Vol. 225, (2003), pp. U712–U712.
  • [16] J. Wettero, A. Askendal, T. Bengtsson and P. Tengvall: “On the binding of complement to solid artificial surfaces in vitro”, Biomaterials, Vol. 23, (2002), 981–991. http://dx.doi.org/10.1016/S0142-9612(01)00203-4[Crossref]
  • [17] M.J. Corey, R.J. Kinders, C.M. Poduje, C.L. Bruce, H. Rowley, L.G. Brown, G.M. Hass and R.L. Vessella: “Mechanistic studies of the effects of anti-factor H antibodies on complement-mediated lysis”, J. Biol. Chem., Vol. 275, (2000), pp. 12917–12925. http://dx.doi.org/10.1074/jbc.275.17.12917[Crossref]
  • [18] D.V. Rozanov, A.Y. Savinov, V.S. Golubkov, T.I. Postnova, A. Remacle, S. Tomlinson and A.Y. Strongin: “Cellular membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves C3b, an essential component of the complement system”, J. Biol. Chem., Vol. 279, (2004), pp.46551–46557. http://dx.doi.org/10.1074/jbc.M405284200[Crossref]
  • [19] D. Fotiadis, P. Qian, A. Philippsen, P.A. Bullough, A. Engel and C.N. Hunter: “Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy”, J. Biol. Chem., Vol. 279, (2004), pp. 2063–2068. http://dx.doi.org/10.1074/jbc.M310382200[Crossref]
  • [20] N. Fang and V. Chan: “Chitosan-induced restructuration of a mica-supported phospholipids bilayer: An atomic force microscopy study”, Biomacromolecules, Vol. 4, (2003), pp.1596–1604. http://dx.doi.org/10.1021/bm034259w[Crossref]
  • [21] N. Bhasin, P. Carl, S. Harper, G. Feng, H. Lu, D.W. Speicher and D.E. Discher: “Chemistry on a single protein, vascular cell adhesion molecule-1, during forced unfolding”, J. Biol. Chem., Vol. 279, (2004), pp. 45865–45874. http://dx.doi.org/10.1074/jbc.M404103200[Crossref]
  • [22] K. U. Streller, T. Pompe, N. Herold, M. Grimmer and C. Werner: “In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces”, Biomacromolecules, Vol. 5, (2004), pp. 1340–1350. http://dx.doi.org/10.1021/bm0499031[Crossref]
  • [23] A. Hirai, Y. Tsujii, M. Tsuji and F. Horii: “AFM observation of band-like cellulose assemblies produced by Acetobacter xylinum”, Biomacromolecules, Vol. 5, (2004), pp. 2079–2081. http://dx.doi.org/10.1021/bm049747y[Crossref]
  • [24] P. Vermette, H.J. Griesser, P. Kambouris and L. Meagher: “Characterization of surface-immobilized layers of intact liposomes”, Biomacromolecules, Vol. 5, (2004), pp. 1496–1502. http://dx.doi.org/10.1021/bm049941k[Crossref]
  • [25] A. Rindlav-Westling and P. Gatenholm: “Surface composition and morphology of starch, amylose, and amylopectin films”, Biomacromolecules, Vol. 4, (2003), pp. 166–172. http://dx.doi.org/10.1021/bm0256810[Crossref]
  • [26] A. Ramanaviciene and A. Ramanavicius: “Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins”, Biosens. Bioelectron., Vol. 20, (2004), pp. 1076–1082. http://dx.doi.org/10.1016/j.bios.2004.05.014[Crossref]
  • [27] A. Ramanaviciene, G. Stalnionis and A. Ramanavicius: “Piezoelectric affinity sensor for detection of bovine leukaemia”, Biologija, Vol. 1, (2004), pp. 33–35.
  • [28] A. Ramanaviciene and A. Ramanavicius: “Application of polypyrrole for the creation of immunosensors”, Crit. Rev. Anal. Chem., Vol. 32, (2002), pp. 331–336. http://dx.doi.org/10.1080/10408340290765542[Crossref]
  • [29] A. Ramanaviciene and A. Ramanavicius: “Pulsed amperometric detection of DNA with an ssDNA/polypyrrole modified electrode”, J. Anal. Bioanal. Chem., Vol. 379, (2004), pp. 287–293. http://dx.doi.org/10.1007/s00216-004-2573-6[Crossref]
  • [30] A.S. Tatham, N.H. Thomson, T.J. McMaster, A.D.L. Humphris, M.J. Miles and P.R. Shewry: “Scanning Probe Microscopy Studies of Cereal Seed Storage Protein Structures Scanning”, Scanning, Vol. 21, (1999), pp. 293–298. http://dx.doi.org/10.1002/sca.4950210502[Crossref]
  • [31] S. Scheuring, D. Fotiadis, C. Möller, S.A. Müller, A. Engel and D.J. Müller: “Single proteins observed by atomic force microscopy”, Single Mol., Vol. 2, (2001), pp. 59–67. http://dx.doi.org/10.1002/1438-5171(200107)2:2<59::AID-SIMO59>3.0.CO;2-P[Crossref]
  • [32] M.C. Coen, R. Lehmann, P. Groening, M. Bielmann, C. Galli and L. Schlapbach: “Adsorption and biactivity of protein A on silicon surfaces studied by AFM and XPS”, J. Colloid Interface Sci., Vol. 233, (2001), pp. 180–189. http://dx.doi.org/10.1006/jcis.2000.7240[Crossref]
  • [33] A. Ramanaviciene, J. Acaite and A. Ramanavicius: “Prevalence of viral infections in ecologically different districts and a new electrochemical immunoassay”, Acta Med. Lituanica, Vol. 8, (2001), pp. 224–229.
  • [34] O.H. Willemsen, M.M. Snel, K.O. van der Werf, B.G. de Grooth, J. Greve, P. Hinterdorfer, H.J. Gruber, H. Schindler, Y. van Kooyk and C.G Figdor: “Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy”, Biophys. J., Vol. 75, (1998), pp. 2220–2228.
  • [35] P.C. Zhang, C. Bai, P.K. Ho, Y. Dai and Y.S. Wu: “Observing interactions between the IgG antigen and anti-IgG antibody with AFM”, IEEE Eng. Med. Biol. Mag., Vol. 16, (1997), pp. 42–46. http://dx.doi.org/10.1109/51.582175[Crossref]
  • [36] Q. Weiping, X. Bin, W. Lei, W. Chunxiao, Y. Danfeng, Y. Fang, Y. Chunwei and W. Yu: “Controlled site-directed assembly of antibodies by their oligosaccharide moieties onto APTES derivatized surfaces”, J. Colloid Interface Sci., Vol. 214, (1999), pp. 16–19. http://dx.doi.org/10.1006/jcis.1999.6151[Crossref]
  • [37] U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, D. Dreier, W. Huber and H.J. Güntherodt: “Specific antigen/antibody interactions measured by force microscopy”, Biophys. J., Vol. 70, (1996), pp. 2437–2441. http://dx.doi.org/10.1016/S0006-3495(96)79814-4[Crossref]
  • [38] C.J. Roberts, M.C. Davies, S.J. Tendler, P.M. Williams, J. Davies, A.C. Dawles, G.D. Yearwood and J.C. Edwards: “The discrimination of IgM and IgG type antibodies and Fab' and F(ab)2 antibody fragments on an industrial substrate using scanning force micrscopy”, Ultramicroscopy, Vol. 62, (1996), pp.149–155. http://dx.doi.org/10.1016/0304-3991(95)00143-3[Crossref]
  • [39] Y. Dong and C. Shannon: “Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection”, Anal. Chem., Vol. 72, (2000), pp. 2371–2376. http://dx.doi.org/10.1021/ac991450g[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.