EN
We report the results derived from the use of molecular descriptors calculated with the correlation weights (CWs) of local graph invariants for modeling of anti-HIV-1 potencies of two groups of reverse transcriptase inhibitors. The presence of different chemical elements in the molecular structure of the inhibitors and the Morgan extended connectivity values of zeroth-, first-, and second order have been examined as local graph invariants in the labeled hydrogen-filled graphs. We have computed via Monte Carlo optimization procedure the values of CWs which produce the largest possible correlation coefficient between the numerical data on the anti-HIV-1 potencies and those values of the descriptors on the training set. The model of the anti-HIV-1 activity obtained with compounds of training set by means of optimization of correlation weights of chemical elements present together with Morgan extended connectivity of first order makes up a sensible model for a satisfactory prediction of the endpoints of the compounds belonging to the test set.