PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2006 | 4 | 1 | 111-117
Article title

Solid state linear-dichroic infrared (IR-LD) spectroscopic characterization of α-and β-glycine polymorphs

Content
Title variants
Languages of publication
EN
Abstracts
EN
IR-LD spectroscopic analysis using nematic liquid crystal suspension as a solid-state orientation technique and the reducing-difference procedure for polarized spectra interpretation are applied to the α-and β-polymorphs of glycine. Both structural analysis and detailed IR band assignments were carried out.
Publisher
Journal
Year
Volume
4
Issue
1
Pages
111-117
Physical description
Dates
published
1 - 3 - 2006
online
1 - 3 - 2006
References
  • [1] Y. Iitaka: “The crystal structure of β-glycine”, Acta Crystallogr., Vol. 13, (1960), pp. 35–45. http://dx.doi.org/10.1107/S0365110X60000066[Crossref]
  • [2] Y. Iitaka: “The crystal structure of λ-glycine”, Acta Crystallogr., Vol. 14, (1961), pp. 1–10. http://dx.doi.org/10.1107/S0365110X61000012[Crossref]
  • [3] R.E. Marsh: “A refinement of the crystal structure of glycine”, Acta Crystallogr., Vol. 11, (1958), pp. 654–663. http://dx.doi.org/10.1107/S0365110X58001717[Crossref]
  • [4] P.-G. Jonsson and A. Kvick: “Precision neutron diffraction structure determination of protein and nucleic acid components. III. The crystal and molecular structure of the amino acid glycine”, Acta Crystallogr., Vol. 28B, (1958), pp. 1827–1833.
  • [5] J. Almlof, A. Kvick and J.O. Thomas: “Glycine-polymorphs”, J. Chem. Phys., Vol. 59, (1973), pp. 3901–3905. http://dx.doi.org/10.1063/1.1680574[Crossref]
  • [6] L.F. Power, K.E. Turner and F.H. Moore: “The crystal and molecular structure of α-glycine by neutron diffraction - a comparison”, Acta Crystallogr., Vol. 32B, (1976), pp. 11–16.
  • [7] T.N. Drebushchak, E.V. Boldyreva and E.S. Shutova: “β-Glycine, Acta Crystallogr., Vol. E58, (2002), pp. 0634–0636.
  • [8] E.V. Boldyreva, T.N. Drebushchak, E.S. Shutova: “Crystal structure of beta and gamma glycine”, Z. Kristallogr., Vol. 218, (2003), p.p. 366–374. http://dx.doi.org/10.1524/zkri.218.5.366.20729[Crossref]
  • [9] E.V. Boldyreva, T.N. Drebushchak, T.P. Shakhtshneider, H. Sowa, H. Ahsbahs, S.V. Goryainov, S.N. Ivashevskaya, E.N. Kolesnik, V.A. Drebushchak and E.B. Burgina: “Variable-temperature and variable-pressure studies of smallmolecule organic crystals”, ARKIVOC, Vol. 12, (2004), pp. 128–155.
  • [10] E.S. Ferrari, R.J. Davey, W.I. Cross, A.L. Gillon and Ch.T. Towler: “Crystallization in Polymorphic Systems: The Solution-Mediated Transformation of β to α-Glycine”, Grystal Grown Design, Vol. 3, (2003) pp. 53–60. http://dx.doi.org/10.1021/cg025561b[Crossref]
  • [11] B.B. Ivanova: “Monoclinic and orthorhombic polymorphs of paracetamol-solid state linear dichroic infrared spectral analysis”, J. Mol. Struct., Vol. 738, (2005), pp. 233–238. http://dx.doi.org/10.1016/j.molstruc.2004.12.036[Crossref]
  • [12] B.B. Ivanova, M.G. Arnaudov and P.R. Bontchev: “Linear-dichroic infrared spectral analysis of Cu(I)-homocysteine complex”, Spectrochim. Acta, Vol. 60A, (2004), pp. 855–864.
  • [13] M.G. Arnaudov, B.B. Ivanova and Sh. Dinkov: “A solid-state linear dichroic infrared spectral study of 4-aminopyridine”, Vibr. Spectrosc., Vol. 37, (2005), pp. 145–148. http://dx.doi.org/10.1016/j.vibspec.2004.08.003[Crossref]
  • [14] B. Jordanov, R. Nentchovska and B. Schrader: “FT-IR linear dichroic solute spectra of nematic solutions as a tool for IR band assignment“, J. Mol. Struct., Vol. 297, (1993), pp. 401–406. http://dx.doi.org/10.1016/0022-2860(93)80195-2[Crossref]
  • [15] B. Jordanov and B. Schrader: “Reduced IR-LD spectra of substances oriented as nematic solutions”, J. Mol. Struct., Vol. 347, (1995), pp. 389–398. http://dx.doi.org/10.1016/0022-2860(95)08561-9[Crossref]
  • [16] J. Michl and E.W. Thulstrup: Spectroscopy with Polarized Light. Solute alignment by photoselection, in liquid crystals, polymers, and membranes, VCH Publishers, New York, 1986.
  • [17] E.W. Thulstrup and J.H. Eggers: “Moment directions of the electronic transitions of fluoranthene”, Chem. Phys. Lett., Vol. 1, (1996), pp. 690–694. http://dx.doi.org/10.1016/0009-2614(68)80122-8[Crossref]
  • [18] M.T. Rosado, M.T.S. Duarte and R. Fausto: “Vibrational spectra of acid and alkaline glycine salts”, Vibr. Spectrosc., Vol. 16, (1998), pp. 35–54. http://dx.doi.org/10.1016/S0924-2031(97)00050-7[Crossref]
  • [19] K. Furic, V. Mohacek, B. Bonifacic and I. Stefanic: “Raman spectroscopic study of H2O and D2O water solutions of glycine”, J. Mol. Struct., Vol. 267, (1992), pp. 39–44. http://dx.doi.org/10.1016/0022-2860(92)87006-H[Crossref]
  • [20] R.W. Williams: “A scaled quantum mechanical force field and vibrational analysis for the gamma glycine crystal polymorph: Hydrogen bond stretching modes observed”, J. Mol. Struct. Theochem, Vol. 685, (2004), pp. 101–107 http://dx.doi.org/10.1016/j.theochem.2004.04.044[Crossref]
  • [21] S.V. Goryainov, E.N. Kolesnik and E.V. Boldyreva: Missing title of the article, Phys. B, Vol. 357, (2005), pp. 340–347.
  • [22] J. Baran and H. Ratajczak: “Polarised IR and Raman spectra of the λ-glycine single crystal”, Spectrochim. Acta, Vol. A61, (2005), pp. 1611–1626.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_1007_s11532-005-0008-7
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.