Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Theoretical calculations of structures, stability and vibrational spectra of 1-butene secondary ozonide (SOZ) conformers were performed using DFT method B3LYP with a 6-311++G(3df, 3pd) basis set. The calculations predict six staggered structures of 1-butene SOZ. The FTIR spectra of 1-butene SOZ isolated in Ar, N2 and Xe matrices were recorded. It was found that nitrogen is the best suited for the matrix isolation of 1-butene SOZ. The bandwidth of the spectral bands of the ozonide isolated in nitrogen was as narrow as 2 cm−1. For the first time the existence of five conformers of 1-butene SOZ were confirmed experimentally by means of matrix isolation infrared absorption spectroscopy. The equatorial gauche (∠OCCC=−66.1°) conformer was proved theoretically and experimentally to be the most stable. It was found that due to high potential barriers of the conformational transitions annealing of the matrix is useless for the assignment of spectral bands to various conformers of 1-butene SOZ. Using the hot nozzle technique the van’t Hoff experimental plots were made for three additional conformers of 1-butene SOZ and experimental ΔH values for these additional conformers were established. The crystallization problems of 1-butene SOZ are discussed which accounts for the rich conformational diversity of the ozonide as well as high conformational barriers for axial-equatorial transitions. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.