Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Mast cells play an important role in both, the innate and adaptive immunity, however, clonal proliferation of abnormal mast cells in various organs leads to mastocytosis. A skin variant of the disease, cutaneous mastocytosis (CM) is the most frequent form of mastocytosis in children. HtrA proteases are modulators of important cellular processes, including cell signaling and apoptosis, and are related to development of several pathologies. The above and the observation that mast cells constitutively release the HtrA1 protein, prompted us to investigate a possible involvement of the HtrA proteins in pediatric CM. Levels of the serum autoantibodies (IgG) against the recombinant HtrA proteins (HtrA1-4) in children with CM (n=36) and in healthy controls (n=62) were assayed. Anti-HtrA IgGs were detected using enzyme linked immunosorbent assay (ELISA) and Western-blotting. In the CM sera, levels of the anti-HtrA1 and anti-HtrA3 autoantibodies were significantly increased when compared to the control group, while the HtrA protein levels were comparable. No significant differences in the anti-HtrA2 IgG level were found; for the anti-HtrA4 IgGs lower levels in CM group were revealed. In healthy children, the IgG levels against the HtrA1, -3 and -4 increased significantly with the age of children; no significant changes were observed for the anti-HtrA2 IgG. Our results suggest involvement of the HtrA1 and HtrA3 proteins in pediatric CM; involvement of the HtrA4 protein is possible but needs to be investigated further. In healthy children, the autoantibody levels against HtrA1, -3 and -4, but not against HtrA2, increase with age.
EN
Objective: To assess the prevalence of UGT1A1*28 and UGT1A1*60 polymorphisms of UGT1A1 gene and their association with hyperbilirubinemia. Study design: The study was performed at a single centre - at the Department of Obstetrics of the Medical University of Gdansk in Poland. DNA was isolated from Guthrie cards of 171 infants. Only full term newborns (gestational age 38-42 weeks) were included in the study. Fluorescent molecular probes were used for UGT1A1 promoter variation analysis. The presence of UGT1A1*28 polymorphism was detected with a dual-probe system, and UGT1A1*60 with a SimpleProbe™. Result: Homozygous UGT1A1*28 and UGT1A1*60 genotypes were detected in 14.6% and 20.5% of the newborns, respectively. Homozygous (G/G) genotypes of UGT1A1*60 polymorphism were found in all of the UGT1A1*28 (i.e. (TA)7/(TA)7) homozygotes. More than 80% (55/66) of the children with "wild" type UGT1A1*28 genotype (where no polymorphism was detected) (i.e. (TA)6/(TA)6) carried the "wild" (T/T) genotype of UGT1A1*60 as well. The UGT1A1*28 polymorphism was detected more often among neonates with elevated bilirubin. Hyperbilirubinemia was diagnosed more frequently in boys. Conclusion: Polymorphisms of the UGT1A1 gene frequently co-exist in neonates. The presence of UGT1A1*28 polymorphism and male gender seem to predispose to neonatal hyperbilirubinemia.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.