Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
We calculate numerically the spectrum of a polaron in a quantum dot in the region of resonance with two-phonon states. We show that the experimental data can be reproduced by a model that does not depend on any adjustable parameters.
2
Content available remote

Carrier Trapping in a Quantum Dash: Optical Signatures

81%
EN
We theoretically study the optical properties and the electronic structure of highly elongated quantum dots (quantum dashes) and show how geometrical fluctuations affect the excitonic spectrum of the system. The dependence of the absorption intensities on the geometrical properties (depth and length) of the trapping center in a quantum dash is analyzed and the dependence of the degree of the linear polarization on these geometrical parameters is studied.
EN
In this paper, we address the problem of luminescence polarization in the case of nanostructures characterized by an in-plane shape asymmetry. We develop a simple semi-qualitative model revealing the mechanism that accounts for the selective polarization properties of such structures. It shows that they are not a straightforward consequence of the geometry but are related to it via valence subband mixing. Our model allows us to predict the degree of polarization dependence on the in-plane dimensions of investigated structures assuming a predominantly heavy hole character of the valence band states, simplifying the shape of confining potential and neglecting the influence of the out-of-plane dimension. The energy dependence modeling reveals the importance of different excited states in subsequent spectral ranges leading to non-monotonic character of the degree of polarization. The modeling results show good agreement with the experimental data for an ensemble of InAs/InP quantum dashes for a set of realistic parameters with the heavy-light hole states separation being the only adjustable one. All characteristic features are reproduced in the framework of the proposed model and their origin can be well explained and understood. We also make some further predictions about the influence of both the internal characteristics of the nanostructures (e.g. height) and the external conditions (excitation power, temperature) on the overall degree of polarization.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.